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Universal Slow Dynamics in Granular Solids
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Experimental properties of a new form of creep dynamics are reported, as manifest in a variety of
sandstones, limestone, and concrete. The creep is a recovery behavior, following the sharp drop in
elastic modulus induced either by nonlinear acoustic straining or rapid temperature change. The extent
of modulus recovery is universally proportional to the logarithm of the time after source discontinuation
in all samples studied, over a scaling regime covering at least 103 s. Comparison of acoustically and
thermally induced creep suggests a single origin based on internal strain, which breaks the symmetry of
the inducing source.

PACS numbers: 62.40.+ i, 62.65.+k, 91.60.–x
Relaxation processes in which some stress is relieved as
the logarithm of time after a step function is applied are
remarkably common: in mechanical response of rocks [1]
and metals [2], thermoremnant magnetization relaxation
in spin glasses [3], dc susceptibility in granular magnetic
media [4], and even fluid invasion percolation in soils [5].
Though these systems have completely unrelated micro-
scopic dynamics, they have in common that these forms of
creep all monotonically minimize a free energy in response
to a constant external stimulus, respecting the symmetry of
the source.

In studies of nonlinear elasticity of many rocks, it was
found that, at strains �1026, retarded effects resembling
creep appeared, which could not be explained with equi-
librium elastic theory, either classical [6] or hysteretic [7].
Their universal feature was a persistent drop in elastic
modulus, and increase in material damping, which could
be induced by harmonic acoustic stressing, and we have
since found also by thermal shocking. After the stress or
shock is removed, the material properties recover toward
their original values as the logarithm of elapsed time, over
a featureless scaling regime lasting hours to days. An im-
portant feature of this effect, which we call slow dynamics,
is that the elastic modulus decreases in response to sym-
metric stress cycling or temperature change of either sign,
thus violating the symmetry of the inducing source.

This Letter reports properties of slow dynamic response
in a variety of sandstones, limestone, and concrete. A reso-
nance method is used to enhance sensitivity to small shifts
in material properties: reduced modulus causes resonant
frequency to drop, and increased damping lowers the res-
onant quality factor Q (defined so that successive cycles
of an undriven oscillator decrease in magnitude by e2p�Q

[8].) The materials studied are sufficiently different that
there appears to be no universally shared chemistry, char-
acteristic scale, or microstructure, suggesting that slow dy-
namics may be an emergent form of creep not seen before.

The symmetry breaking of slow dynamics resembles the
quick loss of microscopic contact area, and its subsequent
restoration as log (time), in the slip�stick of a static friction
bond [9]. Depending on geometry, however, slip may lead
0031-9007�00�85(5)�1020(4)$15.00
to irreversible change (damage accumulation) while slow
dynamic recovery is (at least macroscopically) perfect,
even over hundreds of cycles spanning more than a year.
The combined resemblance to stress-relieving creep and
bond rupture raises the question of whether slow dynam-
ics may arise from a glasslike state, somehow intermediate
between equilibrium elasticity and damage formation.

Creep in all familiar systems [1–5,9] is understood as
a result of thermal activation, and even in the absence of
a full microscopic understanding of slow dynamics, this
leads to a generic prediction of temperature dependence of
the susceptibility. Therefore, slow dynamic recovery was
measured as a function of temperature as well as sample
type and, in one case, humidity. The suspected connec-
tion to bond rupture suggests that modulus and damping
changes are induced by internal straining. Therefore, the
shifts from acoustic driving and thermal shocking were
also compared. From the known thermal expansion an-
isotropy of the underlying grain materials, the compari-
son shows all slow dynamic effects to be consistent with a
single strain-dependent origin.

The experimental method, described in detail in
Refs. [10,11], is to drive a suspended cylindrical sample
of rock or concrete in the fundamental longitudinal
elastic mode (Young’s mode), with a piezoelectric force
transducer cemented between one end of the sample and
a massive backload. Acceleration of the opposite end of
the sample is measured with a lightweight accelerometer
and processed with a lock-in amplifier referenced to the
driving signal. The driving force is a harmonic acoustic
wave, incremented through the fundamental resonance
frequency of the bar, to produce the frequency-dependent
lumped-parameter response function of the resonant
bar�backload system. These response functions can cur-
rently be processed to resolve shifts in Young’s modulus
of one part per million of the static value.

Figure 1 shows the amplitude of a typical response func-
tion, for frequency incremented several times per second,
first upward and then downward through resonance. An
elastic system described by an equilibrium equation of
state, either single-valued (classical) [6] or multivalued
© 2000 The American Physical Society
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FIG. 1. Partial reproduction of Fig. 2 from Ref. [10]. Ampli-
tude of Young’s-mode response of Berea sandstone bar driven
at sequence of frequencies, incremented 2 Hz every 300 ms in
the direction indicated by arrows. Difference of amplitudes in-
dicates a persistent modulus reduction following periods of high
strain, which shifts resonance downward.

(hysteretic) [7], produces an oscillatory strain from har-
monic stress, and must have a single-valued amplitude re-
sponse. The amplitude differences of Fig. 1 are explained
if the modulus of the rock drops after periods of high strain,
thus moving the effective resonant frequency down for a
finite time after each passage through resonance.

The time dependence of the resonant frequency recov-
ery in Fig. 1 was quantified using a two-level force proto-
col. A high-level driving tone was feedback controlled to
track the fundamental resonance for a period of time (usu-
ally 15 min) that we call “conditioning.” The resonance
frequency first drops quickly and then slowly during con-
ditioning, but tracking it with the drive tone ensures that
both applied stress and bar strain are constant at known
values during this time. The high-level tone is then turned
off, and a very low-level tone swept repeatedly through
resonance as in Fig. 1. The amplitude and phase of the
response are processed as in Ref. [8] to yield the instanta-
neous resonance frequency and Q over a recovery period
of the next hour or more.

Figure 2 shows fractional resonant frequency shift per
unit conditioning strain, as a function of time t after the
conditioning drive is turned off, for the six samples stud-
ied. Lavoux is an oölitic limestone, formed by deposi-
tional cementation of oöids, microscopically structure-rich
balls grown in seawater by precipitation of supersaturated
calcite [12]. Fontainebleau sandstone is formed by sili-
cate cementation of very pure, �100 mm quartz poly-
crystals with clean surface structure. Berea sandstone is
quartz with feldspar and significant interstitial clay, which
has both rich topography [13] and complex water chem-
istry. To provide data on the importance of water, the
sample labeled “vacuum” was maintained at elevated tem-
perature in 30 mTorr vacuum for eighteen months prior
to and including the experiment; all other samples were
kept at room temperature in a dry nitrogen environment,
which still permits several percent saturation. Two samples
were concrete, one pristine and one damaged by alkali-
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FIG. 2. Time-dependent shift df of the recovering resonant
frequency, normalized by the asymptotic value f0, per unit con-
ditioning strain j´j. Sample names are indicated in the figure,
and some shifts were scaled by the indicated factors for plotting
purposes. The inset is a fit of relative frequency shift, for Berea
sandstone in vacuum at 65 ±C, to ln�t�t0�.

silica reaction, which changes the xerogel structure and
fluid mobility [14].

The recovery is proportional to ln�t�t0� (with t0 set to
1 s) in all samples, though the sensitivity of the slow-
dynamic frequency shift to strain differs by more than 100
between Fontainebleau and Lavoux, with other samples
between. Comparison of curves at the same scale in Fig. 2
also shows that all recoveries are not similarly smooth,
with the chemically more heterogeneous samples showing
more deviation from a perfect logarithm.

Figure 2 (inset) shows a fit of recovering resonant
frequency �df�t� 2 df�t0���f0 � m ln�t�t0�, for the vac-
uum Berea sample at 65 ±C. The slope m � 2.2 3 1025,
and apparent breakaway from logarithmic scaling at a
time of order 1000 s, characterize this experiment and
sample. The breakaway time is somewhat variable, and
m depends on conditioning force as well as sample
type. [Dependence of the recovery slope on conditioning
duration was also measured (not shown), and found to
increase in proportion to the maximal total frequency shift
attained at the end of the conditioning interval.]

Because creep is expected to be thermally activated, it
is useful to introduce a simple model, to understand what
features of the energy landscape are constrained by log�t�
recovery. The model we use will attempt to make contact
with frictional bond rupture and predicts that, in the ab-
sence of finely tuned temperature dependence of the energy
landscape, the slope m should scale with temperature. This
prediction, together with qualitative expectations about the
behavior of Q, is experimentally confirmed below, though
not in the simplest form.

Conventional understanding of static friction is that its
coefficient ms increases in proportion to an actual area of
microscopic contact, As. In the simplest models, the co-
efficient of proportionality is a material strength property
that may be taken as constant [15]. We will suppose that
conditioning results in something equivalent to frictional
1021
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slip, and that Young’s modulus Y is also proportional to
the microscopic contact area, which contributes parallel
stress-transmission paths to those from unruptured or ce-
mented contacts:

ms ~ As ~ Y �t� � Y �t0� �1 1 2m ln�t�t0�� . (1)

(A connection between friction and modulus could be
checked by extending the experiments of Ref. [15] to mea-
sure time dependence of the modulus for shear stress trans-
mission across the bond as it heals.)

Logarithmic area growth should result from formation of
bonds impeded by an arbitrary, smooth spectrum of energy
barriers [16]. The hopping rate over barriers of energy E is

r�E� � v0�E�e2E�kT , (2)

where v0 is a well-sampling frequency, k is Boltzmann’s
constant, and T is temperature. If the cleaved area is
represented by an initial density of unformed bonds r0�E�,
the density remaining unformed at time t is

rt�E� � r0�E�e2r�E�t . (3)

The unrecovered modulus dY is proportional to the num-
ber of unformed bonds:

dY�t� � 2Y0

Z E2

E1

dE rt�E� , (4)

where Y0 is a reference scale, and E1 and E2 are limits
on the barrier energies present. As long as the distribution
r0�E� is softer than exponential, and the sampled times are
well within the limiting rates at E1 and E2, Eqs. (2)–(4)
can be approximated as

Y �t2� 2 Y �t1� � Y0r0�Echar�kT
Z `

0

dr
r

�e2rt1 2 e2rt2�

� Y0r0�Echar�kT ln�t2�t1� . (5)

Echar is a characteristic energy for the times sampled. For
the high-temperature assumption v0 � kT�h̄, and 10 s &

t & 1000 s, Echar � 1 eV.
Careful comparison of the breakaway of Fig. 2 to the

equation form (4) is carried out in Ref. [11]. It is clear,
though, that the time limit of logarithmic scaling is im-
posed by E2 � Echar for the relatively narrow range of
times sampled here. The energy barriers to slow dynamic
recovery are therefore on the scale of crystal defect forma-
tion, close-range dislocation interaction [17], or breakage
of surfactant bonds.

Since the origin of the supposed spectrum of energy
barriers is unknown, there is no reason to assume a par-
ticular dependence of r0�Echar� on either temperature or
time. However, if r0�Echar� is weakly temperature depen-
dent, the scaling of the slope for Fig. 2 should lie near
the constant-r0 limit of m � �1�2�r0�Echar�kT . Figure 3
shows the slopes for recovery of the vacuum Berea sample
at temperatures in 5 ±C increments between 30 and 65 ±C,
taken either 12 h or 36 h after incrementing temperature.
Temperatures were first decreased and then increased (to
screen for progressive damage, which was not found), and
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FIG. 3. Slope m � �df�t� 2 df�t0����f0 ln�t�t0��, versus
temperature, at 12- and 36-h delays after temperature change.
Dots are data; dashed lines and arrows indicate temporal order
of measurements. Solid lines are power-law fits m ~ T0.7 at
12 h, and m ~ T0.5 at 36 h.

the temperature range was set by apparatus limitations (low
end) and baking thresholds for clays (high end).

Recovery rates are temperature dependent at both times,
but neither scales linearly with temperature, and the power
law is smaller at 36 h than at 12 h. In terms of Eq. (5),
r0�Echar�, which defines a susceptibility for creep, depends
on both temperature and the time delay after it is changed.

The smaller-than-expected scaling of the susceptibility
in Fig. 3 may be qualitatively related to the observation
that slow-dynamic softening is induced by temperature
change itself, independently of oscillatory driving. Fig-
ure 4 shows frequency and quality factor shifts from rapid
changes between 55 and 60 ±C. The material softens in
both cases, and while the frequency drop is only �0.1%,
Q decreases by a remarkable 10%.

A large decrease in Q suggests creation of new multi-
stable states with barriers small enough to be activated
within an elastic cycle. If this arises from slip, it should
be due to the stress field created by anisotropic expansion
and random orientation of grains. Stress relaxation by
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factor (noisier dashed curve), after temperature changes 55 ±C !
60 ±C and 60 ±C ! 55 ±C. Difference of recovery asymptotes
from initial values indicates t ! ` equilibrium dependence of
sound speed and Q on temperature. Semilog plot of frequencies
shown in left-hand panel.
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FIG. 5. Dependence of recovery slope on conditioning magni-
tude. Maximal conditioning strain indicated for individual re-
coveries �df�t� 2 df�t0���f0 � m ln�t�t0�, and the relation of
slope to maximal instantaneous conditioning strain, m � 11.1 3
�j´j 2 4.7 3 1027�, is shown inset.

creep restores contact area, reducing the number of low-
barrier events available. If the number of higher-barrier
events diminishes in kind, r0�Echar � will decrease over
time, correlated with 1�Q. Such a correlation, together
with the observation that Q increases with temperature,
would explain how decreasing r0 compensates the T -linear
slope of Eq. (5) to produce Fig. 3. Why this is more visible
at 36 h than at 12 h we do not know.

The prediction that modulus reduction results from an
induced internal strain field of arbitrary origin can be tested
by comparing the magnitudes of acoustically and ther-
mal-shock driven shifts. Figure 5 shows modulus recovery
as a function of time at five different acoustic condition-
ing strains. The relation of the logarithm coefficient to
maximal conditioning strain, m � 11.1 3 �j´j 2 4.7 3

1027�, is shown (inset).
The acoustic scaling relation can be extrapolated and

compared to the thermal recoveries. Under 5 ±C tem-
perature change, the internal strain of a randomly ori-
ented matrix of quartz crystals may be estimated from the
difference of grain parallel- and perpendicular-axis coef-
ficients of expansion, da � 0.65 3 1025 ±C21 [18], as
j´j � 3.25 3 1025. The slope then predicted by the Fig. 5
dependence is m � 3.6 3 1024, close to the fit value
m � 2.8 3 1024 from Fig. 4.

Logarithmic scaling persists in Fig. 4 to �3 3 104 s,
where the acoustic scaling regime ended at �103 s. In spin
glass aging [19], the transition time between logarithmic
and power-law scaling is known to depend on the time
between quench and removal of the external induction. If
a similar dependence characterizes the dc susceptibility in
granular magnetic media [4], it would be interesting to see
if they experience a symmetry-breaking susceptibility shift
under ac drive, analogous to ours.
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