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Remnant Fermi Surfaces in Photoemission
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Recent experiments have introduced a new concept for analyzing the photoemission spectra of corre-
lated electrons—the remnant Fermi surface (rFs), which can be measured even in systems which lack a
conventional Fermi surface. Here, we analyze the rFs in a number of interacting electron models, and
find that the results fall into two classes. For systems with particle-particle (pairing) instabilities, the rFs
is an accurate replica of the true Fermi surface. In the presence of particle-hole (nesting) instabilities, the
rFs is a map of the resulting superlattice Brillouin zone. The results suggest that the gap in Ca2CuO2Cl2
is of particle-hole origin.

PACS numbers: 71.18.+y, 71.27.+a, 79.60.2 i
Recently, a new experimental tool has been introduced
[1] to parametrize photoemission (PE) data in strongly cor-
related metals: the “remnant Fermi surface” (rFs). This is
the locus of points in �k space where the PE intensity asso-
ciated with a particular quasiparticle peak falls to half of
its peak value. For an ordinary metal, these points would
correspond to the Fermi surface, but in strongly correlated
metals the points do not necessarily fall at the same en-
ergy—the rFs may display a considerable dispersion.

Ronning et al. [1] measured the rFs of Ca2CuO2Cl2
(CCOC), a half filled Mott insulator, and compared it
with the rFs of optimally doped Bi2Sr2CaCu2O8 (BSCCO).
When underdoped, the dispersion of the pseudogap in
BSCCO evolves toward that of CCOC [2], suggesting a
close connection between CCOC and the pseudogap in
BSCCO (or at least the “hump” feature in the dispersion
[3]). Qualitatively, the rFs of CCOC seems consistent with
Luttinger’s theorem, even though it displays a considerable
dispersion. Despite this, the rFs’s of the two materials are
strikingly different, and cannot evolve from each other via
rigid band filling (they cross). A proper understanding of
the rFs could lead to an improved model for the pseudogap
in these materials.

In this Letter we analyze the rFs expected for a variety
of interacting electron systems, and show that they do not
necessarily provide information about the Fermi surface.
The results fall into two classes, depending on whether the
interaction can be characterized as “nesting” or “pairing.”
Only in the latter case is the rFs a reliable map of the Fermi
surface. In the former case, it maps out the superlattice
Brillouin zone generated by the nesting instability.

A number of different mechanisms have been proposed
for the origin of pseudogaps in the cuprates. These in-
clude magnetic (spin density wave—SDW) [4], flux phase
(RVB) [5–8], charge ordering (CDW) [7,9], and supercon-
ducting fluctuations [10]. These instabilities fall into two
classes: the first three are instabilities of the particle-hole
�p-h� propagator (here called p-h or generalized nest-
ing instabilities) associated with a preferred nesting vector,
here �Q � �p, p�, while the last is a particle-particle �p-p�
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instability, a pairing instability in the uniform susceptibil-
ity at �q � 0. The p-h instabilities include both conven-
tional nesting instabilities (CDW and SDW) at weak cou-
pling and the Mott instability at strong coupling [11]. We
find that the rFs has two strikingly different origins in these
two classes, but there is relatively little variation within a
given class. In CCOC the rFs seems to indicate the locus
of the reduced Brillouin zone, characteristic of a p-h in-
stability.

An important sum rule relating the integrated intensity
to the momentum distribution has been utilized by Rande-
ria et al. [12] for analyzing angle-resolved photoemission
spectroscopy (ARPES) data, and is given by

n� �k� �
Z `

2`
dv f�v�A� �k, v� , (1)

where A� �k, v� is the one particle spectral function of the
model, n�k� � �cy

�k
c�k� is the momentum distribution, and

f�v� is the Fermi function. Although n� �k� is a ground
state property, they proved that in the limit of the sudden
approximation the frequency integrated spectral function
gives the momentum distribution. They employed this sum
rule to determine the momentum distribution in BSSCO
and YBCO. Ronning et al. [1] extended this methodol-
ogy to strongly correlated electron compounds. By defin-
ing kF as the point of steepest descent, they showed that
even when strong Coulomb correlations destroy the Fermi-
liquid character of the system, n� �k� still drops sharply, al-
lowing the determination of a rFs.

In the following, we calculate the spectral function
A� �k, v� and the momentum distribution for mean-field
models with a variety of instabilities. Figure 1 illustrates
the rFs’s associated with SDW instabilities for a variety
of superlattices. The energy dispersion has the standard
one-band form

e�k � 22t0�coskxa 1 coskya� 2 4t1 coskxa coskya ,

(2)
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FIG. 1. Remnant Fermi surfaces for SDW instabilities with
different nesting vectors at T � 0 K. (a) Evolution of the rFs
toward a perfect square with increasing SDW gap, for nesting
vector �Q � �p, p�; (from darkest to lightest) OSDW � 0, 100,
300, 500 meV. (b) Fermi and remnant Fermi surface for an
SDW with the nesting vector �Q0 � �0, 2p

3 �; left � Fermi sur-
faces without nesting (grey) and with nesting OSDW � 100 meV
(black), right � the rFs. The horizontal parts of the rFs map the
superlattice boundaries (light lines).

with t0 � 0.25 eV, t1 � 20.45t0. While the present cal-
culations are for an SDW, the rFs’s for a CDW are iden-
tical [13], while those for a flux phase are very similar
[14]: over part of the surface, there is no gap, and the
rFs is dispersionless, coinciding with the Fermi surface
at e �k � EF ; here n� �k� � 1�2 is mainly due to the Fermi
function in Eq. (1). Over the rest of the zone, the rFs lies
along the zone boundaries of the nesting superlattice. On
this part of the rFs there is considerable dispersion, and
n� �k� � 1�2 due to the coherence factor, discussed below.
Note the presence in the rFs of “half pockets.” The Fermi
surface for a doped antiferromagnet is a full pocket. How-
ever, because of the coherence factors the “ghost” Fermi
surface— the half of the pocket beyond the magnetic line
�p , 0�-�0, p�—always has a weight less than one-half, and
hence is not present in the rFs. Therefore the rFs lies in
the reduced Brillouin zone. By contrast, the rFs for a p-p
(pairing) instability is always located below EF at the su-
perconducting gap, dispersionless for s-wave, dispersive
for d-wave, but in both cases faithfully following the con-
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tours of the Fermi surface. In Fig. 1a one can see that in
the strong coupling regime a large p-h instability causes
the rFs to follow the antiferromagnetic Brillouin zone even
if nesting is poor.

In Fig. 1a, we consider nesting between the saddle
points �p, 0� and �0, p� leading to a rFs mapping of the
magnetic

p
2 3

p
2 superlattice. This is the superlattice

most likely to be relevant near half filling in the cuprates,
and indeed matches the rFs found by Ronning et al. [1]
in CCOC. We can, however, extend this procedure
for an arbitrary nesting vector. In Fig. 1b the band
parameters are chosen such that segments of the Fermi
surface (grey line) are approximately nested by a vector
�Q0 � �0, 2p�3�. When the interaction is turned on new
superlattice boundaries form (thin horizontal lines), and
the rFs is again composed of zone boundaries and Fermi
surface fragments (right, dark lines). The new Fermi sur-
faces are redrawn on the left in an extended zone scheme
(black lines). This example shows that the rFs should
be applicable to a wide variety of structural instabilities.
Moreover, in the high-Tc cuprates, it has been proposed
that the incommensurate neutron scattering peaks [15,16]
are associated with nesting (i.e., p-h) instabilities.

If the pseudogap is due to a p-h instability compet-
ing with superconductivity, there should be a characteris-
tic evolution of the rFs with doping, from nestinglike at
half filling to pairinglike in the overdoped regime. The
phase diagram has been worked out for such a competi-
tion, both for CDW-to-s-wave superconductivity [13] and
for flux phase to d-wave [8,14]. In both cases, we find the
evolution of the rFs’s is nearly identical. Figure 2 illus-
trates this evolution for the latter case. Note that since the
phase at half filling is fully gapped (a Mott insulator), the
rFs is perfectly square. The two limiting cases, insulator
and optimally doped, bear a marked resemblance to the
experimental observations [1].

In the calculations of Fig. 2, we took the competing
phases to be d-wave superconductivity, with gap D

d
�k

�
Ddg �k , with g �k � coskxa 2 coskya and an orbital anti-
ferromagnet [17,18], a ph-h instability with gap OJC

�k
�

OJCg�k , which is essentially equivalent to the flux phase in-
stability introduced by Affleck and Marston [19]. We con-
sider a one-band model, Eq. (2), with correlation effects
simulated by a doping dependent t0 � xt�

0 , t�
0 � 2.3 eV,

and the Van Hove singularity (VHS) pinned close to the
Fermi level over an extended range of doping [7,13].

The mean-field quasiparticle dispersion is

E2
6,�k

�
1
2

�e2
�k

1 e
2
�k1 �Q

1 2D
2
�k

1 2OJC2

�k
6 �e �k 1 e �k1 �Q�Ê �k� , (3)

with Ê�k �
q

�e �k 2 e �k1 �Q�2 1 4OJC2

�k
. The above calcula-

tion differs from that of Fig. 1, in that the shape of the
Fermi surface evolves with doping. However, the evolu-
tion of the rFs for the flux phase gap is generically toward
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FIG. 2. (a) Evolution of the rFs from half filling to optimal
doping at T � 0 K with self-consistent gap parameters for a
model with d-wave superconductivity and flux phase. Curves
from lightest to darkest: x � 0 (thin line), 0.04, 0.1, 0.19, and
0.26 (black line). Inset: Pseudogap phase diagram. Solid
line � pseudogap transition T �; dotted line � superconducting
transition Tc. (b) Quasiparticle dispersion along the rFs plotted
in (a), tanu � kx�ky .

a square Fermi surface at half filling (thin line in Fig. 2).
For finite doping, only part of the Fermi surface is gapped,
and the rFs has two parts, a (hole pocket) Fermi surface
on the ungapped part of the rFs, and a segment of square
on the gapped part. With increasing gap magnitude, the
former feature shrinks and the latter grows, until the full
Fermi surface is gapped and the rFs is square. There is
considerable dispersion of the rFs (Fig. 2b), since the flux
phase gap vanishes when kx � ky . The shrinking of the
Fermi surface is reminiscent of the evolution in BSCCO
reported by Norman et al. [20]. It should be noted that the
rFs is not equivalent to the minimum gap locus introduced
by Ding et al. [21].

The origin of the rFs can be understood from these cal-
culations. In the competing flux phase-d-wave model, n� �k�
can be written as

n�k� �
1
2

µ
1 2 cos2f cos2f1 tanh

bE1, �k

2

2 sin2f cos2f2 tanh
bE2, �k

2

∂
, (4)
with tan2f6 � 2D �k��e�k 1 e �k1 �Q 6 Ê �k� and tan2f �
2OJC

�k
��e�k 2 e �k1 �Q�. For a pure d-wave superconductivity

model this becomes

n�k� �
1
2

µ
1 2

e �k

E �k
tanh

bE �k

2

∂
, (5)

with E�k �
q

e
2
�k

1 D
2
�k
, showing that the rFs coincides with

the true Fermi surface: n� �k� � 1�2 when e �k � 0. For a
pure magnetic (or charge) instability model n� �k� is given
by

n� �k� �
1
2

√
1 2 cos2f tanh

bEnest
1, �k

2

2 sin2f tanh
bEnest

2,�k

2

!
, (6)

with Enest
6,�k

� �e�k 1 e �k1 �Q 6 Ê�k��2. As T ! 0, the two

tanh’s go to 1 or 21, so n� �k� � 1�2 when cos2f 2

sin2f � 0, or, from the definition of f [below Eq. (4)],
e �k � e �k1 �Q . For the present model, this is the superlattice
Brillouin zone boundary.

In the above calculation, the reduction n�k� , 1 can be
traced to a coherence factor coupling two bare states. This
should be contrasted with the insulator gap due to a filled
band [22]. In the latter case, there is no coherence factor,
and n�k� � 1 for all filled states.

In the underdoped regime, as temperature is lowered the
cuprates pass first into the pseudogap phase, at tempera-
ture T�, then into a superconducting phase at Tc (inset,
Fig. 2a). In the present scenario, T� would signal a tran-
sition to a p-h phase with a gap (or pseudogap if realis-
tic fluctuations are included [4,23]), leaving hole pockets
behind. Below Tc, an additional, p-p gap opens at the
hole pockets. However, a careful look at the rFs shows a
more complicated evolution, Fig. 3a: the shape of the hole
pockets changes, with an accompanying transfer of spec-
tral weight from the nesting to the pairing parts of the rFs.
Note that in Fig. 3a the rFs has the same locus in k space
as the true hole pocket Fermi surface above Tc, but from
Fig. 3b there is a dramatic shift in dispersion of this rFs as
the superconducting gap opens.

In comparing these results to experiment, the rFs of
CCOC clearly displays the square shape expected for a pre-
dominantly p-h interaction. This is consistent with all of
the pseudogap models noted above, except for preformed
pairs. In fact, preformed pairs would still be a possibility,
if strong correlation effects renormalized the (true) Fermi
surface to square at half filling. Such renormalization has
been proposed previously [24]. However, in these theories,
the renormalization leads to greatly enhanced nesting,
and is less favorable for pairing. The most likely con-
clusion is that the pseudogap in the underdoped cuprates
represents some magnetic (or charge) instability, which is
fundamentally competing with superconductivity; this
is consistent [13] with recent experimental evidence for
mixed behavior of the gap [25]. Clearly, since the cuprates
965
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FIG. 3. (a) Evolution of the rFs with temperature for a fixed
doping x � 0.19: black line—T � 0 K; grey line—T � Tc �
94 K (Dd � 0 meV); dashed line shows what the flux phase
rFs at T � 0 K would be if Dd � 0 meV. Inset: Temperature
dependence of the superconducting and flux phase gaps; dot-
ted line � Dd ; solid line � OJC; dashed line �

p
Dd2

1 OJC2 .
(b) Quasiparticle dispersion along the rFs plotted in (a).

are quasi-two-dimensional, there should be prominent
superconducting fluctuations above Tc, but they do not
represent the dominant part of the pseudogap.

Some results on rFs’s have already appeared in the lit-
erature. Friedel and Peter [26] discussed the effect of
CDW and SDW gaps on Fermi surfaces determined by
positron annihilation, while Bulut et al. [11] discussed the
role of coherence factors on SDW rFs’s. The present paper
stresses the great generality of the phenomenon, and its use
in distinguishing nesting from pairing phenomena. While
the rFs should play an important role in future ARPES
studies, its full potential must await a more complete un-
derstanding of the pseudogap phenomenon.

The present results suggest a number of experimental
tests. The rFs should be mapped out in the cuprates as a
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function of doping. In particular, the results of Norman
et al. [20] should be extended to the full rFs. Observation

of a shift in spectral weight with temperature, Fig. 3 would
provide strong additional evidence that the pseudogap is
a p-h (nesting) phenomenon, and not due to preformed
pairs. Moreover, the rFs can be studied in other systems,
to confirm the predicted properties. A start has already
been made in CDW systems [27]. Other Mott insulators
would also be of interest, particularly nonmagnetic Mott
insulators.

*On leave of absence from Institute of Atomic Physics,
Bucharest, Romania.

[1] F. Ronning et al., Science 282, 2067 (1998).
[2] R. B. Laughlin, Phys. Rev. Lett. 79, 1726 (1997).
[3] J. C. Campuzano et al., cond-mat/9906335.
[4] A. P. Kampf and J. R. Schrieffer, Phys. Rev. B 41, 6399

(1990); 42, 7967 (1990).
[5] R. B. Laughlin, J. Phys. Chem. Solids 56, 1627 (1995).
[6] X.-G. Wen and P. A. Lee, Phys. Rev. Lett. 76, 503 (1996).
[7] R. S. Markiewicz, Phys. Rev. B 56, 9091 (1997).
[8] E. Cappelluti and R. Zeyher, Physica (Amsterdam) 312C,

313 (1999); Phys. Rev. B 59, 6475 (1999).
[9] R. A. Klemm (unpublished).

[10] V. J. Emery and S. A. Kivelson, Nature (London) 374, 434
(1995); M. Randeria, cond-mat /9710223 (unpublished);
Q. Chen, I. Kosztin, B. Jankó, and K. Levin, Phys. Rev.
Lett. 81, 4708 (1998).

[11] N. Bulut, D. J. Scalapino, and S. R. White, Phys. Rev. Lett.
73, 748 (1994).

[12] M. Randeria et al., Phys. Rev. Lett. 74, 4951 (1995).
[13] R. S. Markiewicz, C. Kusko, and V. Kidambi, Phys. Rev.

B 60, 627 (1999).
[14] C. Kusko and R. S. Markiewicz (unpublished).
[15] K. Yamada et al., Phys. Rev. B 57, 6165 (1998).
[16] H. A. Mook et al., Nature (London) 395, 580 (1998).
[17] H. J. Schulz, Phys. Rev. B 39, 2940 (1989).
[18] R. S. Markiewicz and M. T. Vaughn, J. Phys. Chem. Solids

59, 1737 (1998); Phys. Rev. B 57, 14 052 (1998).
[19] I. Affleck and J. B. Marston, Phys. Rev. B 37, 3774 (1988).
[20] M. R. Norman et al., Nature (London) 392, 158 (1998).
[21] H. Ding et al., Phys. Rev. Lett. 78, 2628 (1997).
[22] J. M. Ziman, Principles of the Theory of Solids (Cambridge

University Press, Cambridge, 1964), p. 340.
[23] R. S. Markiewicz, Physica (Amsterdam) 169C, 63 (1990).
[24] R. S. Markiewicz, J. Phys. Chem. Solids 58, 1179 (1997)

(see p. 1223); N. Furukawa, T. M. Rice, and M. Salmhofer,
Phys. Rev. Lett. 81, 3195 (1998).

[25] C. Panagopoulos and Tao Xiang, Phys. Rev. Lett. 81, 2336
(1998).

[26] J. Friedel and M. Peter, Europhys. Lett. 8, 79 (1989).
[27] Th. Pillo et al., cond-mat/9902327.


