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Simple Classical Mapping of the Spin-Polarized Quantum Electron Gas:
Distribution Functions and Local-Field Corrections
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We use the now well known spin unpolarized exchange-correlation energy Exc of the uniform electron
gas as the basic “many-body” input to determine the temperature Tq of a classical Coulomb fluid having
the same correlation energy as the quantum system. It is shown that the spin-polarized pair distribution
functions (SPDFs) of the classical fluid at Tq, obtained using the hypernetted chain equation, are in
excellent agreement with those of the T � 0 quantum fluid obtained by quantum Monte Carlo (QMC)
simulations. These methods are computationally simple and easily applied to problems which are cur-
rently beyond QMC simulations. Results are presented for the SPDFs and the local-field corrections to
the response functions of the electron fluid at T � 0 and finite T .

PACS numbers: 71.10.Ca, 05.30.Fk, 71.45.Gm
The uniform interacting electron gas (UEG) is the “text-
book” many-body problem of Fermi liquids in metals,
plasmas, or doped semiconductors [1]. It provides a model
exchange-correlation potential for density functional theory
(DFT) applications [2]. The random-phase approximation
(RPA) to the properties of the UEG provides an important
“baseline” which could be reached by many techniques
like quantum linked-cluster expansions, Green’s functions,
or linearized equations of motion. RPA is a reasonable
approximation when the “coupling parameter” G �
�potential energy���kinetic energy� of the Coulomb fluid
is smaller than unity. The G for the UEG at T � 0 is the
mean sphere radius rs per electron; i.e., for the 3D case,
G � rs � �3�4pn�1�3, with n the number density per a.u.

Improving the RPA is nontrivial if the theory is expected
to satisfy sum rules and provide physically realistic pair-
distribution functions (PDFs), i.e., g�r�, of the quantum
system. Diagrammatic methods look for resummations
that conserve the sum rules, Ward identities, etc. This
approach is followed in the work of Hubbard, Vosko, and
Langreth, and Geldart and Taylor (GT) [1,3]. MacDonald
et al. [4] have considered the self-energy, while others have
studied the response functions [5].

The equations of motion beyond the RPA require an
“ansatz” to “close” the equations. Singwi et al. (STLS) [6]
used a physically motivated closure by introducing the
electron PDF determined self-consistently. In spite of a
large effort, the calculation of the electron gas g�r� at ar-
bitrary spin polarization z , rs, and T is unsolved. In fact,
STLS, Ichimaru et al. [5], give negative PDFs for suffi-
ciently large rs in the metallic range. Even the attempts to
directly fit the PDFs and response functions to sum rules,
etc., seem to fail for important regimes of rs and T [7].
However, the static local-field correction (LFC) has been
fitted to quantum Monte Carlo (QMC) data and sum rules
by Farid et al. (FHER) [8].

Another approach uses a trial wave function c � FD
where F is a correlation factor and D is a Slater determi-
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nant. This typically leads to the Feenberg energy func-
tionals which are handled in several ways [9–11]. QMC
techniques also use such a c and lead, e.g., to the varia-
tional Monte Carlo (VMC) method [12–14]. The QMC es-
timate of the exchange-correlation energy, Exc�rs�, is now
available in several parametrized forms [15,16]. While it
is easy to get good Exc�rs�, the opposite is true for other
properties like the PDFS and LFCs.

In this Letter we present a computationally simple, con-
ceptually novel method for calculating the PDFs and other
properties (e.g., response functions) of the UEG, given the
unpolarized Ec from whatever source (e.g., STLS, QMC,
etc.). The PDFs of classical fluids are easily obtainable
from classical Monte Carlo or via the hypernetted chain
(HNC) procedure [17]. We consider a classical Coulomb
fluid with two species (up, down spins). We ask for the
temperature Tq at which the PDFs of a Coulomb fluid,
obeying the classical HNC-integral equation, yield the Exc
of the UEG at the same density and at T � 0. The suffix
q in Tq signifies that this temperature reflects the quan-
tum many-body interactions in the UEG. Using the tem-
perature Tq at each rs we obtain gij�r�, spin-polarized
correlation energies Ec�rs, z �, LFCs, etc. While many in-
teresting applications are possible, here we treat the 3D
spin-polarized UEG at zero and finite T .

The physical motivation for our method comes from
DFT where interacting electrons are replaced by nonin-
teracting Kohn-Sham (KS) particles whose wave function
is a simple determinant. This is very different to the Feen-
berg approach which uses a correlated c � FD [10,11].
In DFT the many-body potential is replaced by a one-body
KS potential, VKS . Since the natural energy parameter of
the classical ensemble is the temperature, we look for a
temperature mapping of the VKS .

Consider a fluid of mean density n containing two spin
species with concentrations xi � ni�n. We deal with the
physical temperature T of the UEG, while the tempera-
ture Tcf of the classical fluid is 1�b. Since the leading
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dependence of the energy on temperature is quadratic, we
assume that Tcf �

p
�T2 1 T2

q �. This is clearly valid for
T � 0 and for high T . This assumption will not be probed
more deeply in this Letter where the main effort is to study
Tq and its applications for the UEG at T � 0.

The pair-distribution functions for a classical fluid at an
inverse temperature b can be written as

gij�r� � exp�2bfij�r� 1 hij�r� 2 cij�r� 1 Bij�r�� .

(1)

Here fij�r� is the pair potential between the species
i, j. For two electrons this is just the Coulomb potential
VCou�r�. If the spins are parallel, the Pauli principle
prevents them from occupying the same spatial orbital.
Following the earlier work, notably by Lado [18], we
also introduce a “Pauli potential,” P �r�. Thus fij�r�
becomes P �r�dij 1 VCou�r�. The Pauli potential P �r�
will be discussed with the PDFs of the noninteracting
UEG, i.e., g0

ij�r�. The function h�r� � g�r� 2 1; it is
related to the structure factor S�k� by a Fourier transform.
The c�r� is the “direct correlation function (DCF)” of the
Ornstein-Zernike (OZ) equations.

hij�r� � cij�r� 1 Ssns

Z
dr0hi,s�jr 2 r0j�cs,j�r0� . (2)

The Bij�r� term in Eq. (1) is the “bridge” term arising from
certain cluster interactions. If this is neglected, Eqs. (1)
and (2) form a closed set providing the HNC approxima-
tion to the PDF of a classical fluid. Various studies have
clarified the role of B�r� and its treatment via “reference”
HNC equations [19]. B�r� is important when the coupling
constant G exceeds, say, 20. The range of G relevant to
this work (e.g., G � 4.5 even for rs � 10) is such that
the HNC approximation holds. The HNC approximation
suffers from a compressibility inconsistency (CI), i.e., the
excess compressibility calculated from the small-k limit
of the short-ranged part of c�k� does not agree with that
obtained from the excess free energy. This CI can be cor-
rected by including a suitable bridge term.

Consider the noninteracting system at temperature T ,
with xi � 0.5 for the paramagnetic case. The parallel-spin
PDF, i.e., g0

ii�r , T �, will be denoted by g0
T �r� for simplicity,

since g0
ij�r , T �, i fi j is unity. Denoting �r1 2 r2� by r, it

is easy to show that

g0
T �r� �

2
N2 Sk1,k2n�k1�n�k2� �1 2 ei�k12k2�?r� . (3)

Here n�k� is the Fermi occupation number at the tempera-
ture T . Equation (3) reduces to

g0
T �r� � 1 2 F2

T �r� , (4)

FT �r� � �6p2�k3
F�

Z
n�k�

sin�kr�
r

k dk
2p2 . (5)

Here kF is the Fermi momentum. Thus g0
T �r� is obtained

from the Fourier transform of the Fermi function. Then
960
c0�r� can be evaluated from g0
T �r� using the OZ relations.

The T � 0 case can be evaluated analytically [18].
Assuming that g0

ii�r� can be modeled by an HNC fluid
with the pair interaction bP �r�, dropping the indices, we
have

g0�r� � exp�2bP �r� 1 h0�r� 2 c0�r�� . (6)

The k-space DCF, i.e., c0�k�, decays as 4kF�3k for small
k and for T � 0, showing that the r-space form c0�r� is
long ranged. The Pauli potential P �r� is given by

bP �r� � 2 log� g0�r�� 1 h0�r� 2 c0�r� . (7)

We can determine only the product bP �r�. The classical
fluid “temperature” 1�b is still undefined and is not the
thermodynamic temperature T . The Pauli potential is a
universal function of rkF at T � 0. It is long ranged and
mimics the exclusion effects of Fermi statistics. At finite T
its range is about a thermal wavelength and is increasingly
hard-sphere-like. Plots of bP �r� and related functions are
given in Fig. 1.

The next step is to use the full pair potential fij�r�, and
solve the coupled HNC and OZ equations for the binary
(up and down spins) interacting fluid. For the paramag-
netic case, ni � n�2, we have

gij�r� � e2b�P �r�dij1VCou�r��1hij �r�2cij�r�, (8)

hij�q� �
FT
! hij�r� , (9)

h11�q� � c11�q� 1 �n�2� �c11�q�h11�q� 1 c12�q�h21�q�� ,

(10)

FIG. 1. The Pauli potential, Eq. (8), and the noninteracting
PDF, g0

11�r� at T�EF � 0 and 2 (dashed lines). They are uni-
versal functions of rkF , where kF is the Fermi wave vector. The
arrows refer the curves to the axes.
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h12�q� � c12�q� 1 �n�2� �c11�q�h12�q� 1 c12�q�h22�q�� ,

(11)

The Coulomb potential VCou�r� needs some discussion.
For two point-charge electrons this is 1�r . However, de-
pending on the temperature T , an electron is localized to
within a thermal wavelength. Thus, following Minoo et al.
[20], we use a “diffraction corrected” form:

VCou�r� � �1�r� �1 2 e2r�lth �; lth � �2pmTcf�21�2.

(12)

Here m is the reduced mass of the electron pair, i.e.,
m��rs��2 a.u., where m��rs� is the electron effective mass.
It is weakly rs dependent, e.g., �0.96 for rs � 1. In this
work we take m� � 1. The “diffraction correction” en-
sures the correct behavior of g12�r � 0� for all rs.

In solving the above equations for a given rs and at
T � 0, we have Tcf � Tq. A trial Tq is adjusted to obtain
an Ec�Tq� equal to the known paramagnetic Ec�rs� at each
rs, via a coupling constant integration.

Exc�Tq� �
Z 1

0

dl

2

Z 4pr2 dr
r

�h11�r , l� 1 h12�r , l��

(13)

(Ex alone is obtained if l is fixed at 0). The resulting
“quantum” temperatures Tq could be fitted to the form

Tq�EF � 1.0��a 1 b
p

rs 1 crs� . (14)

The results for Ec from different QMC methods differ, e.g.,
by �6% at rs � 1. We used the most recent Ortiz-Ballone
Ec data for the paramagnetic UEG from VMC and from
diffusion Monte Carlo (DMC) [13]. The difference in Ec

in VMC and DMC leads to slightly different fits. The fit
coefficients are, for DMC, a � 1.594, b � 20.3160, and
c � 0.0240, while for VMC a � 1.3251, b � 20.1779,
and c � 0.0. Eight values of rs, viz., rs � 1 6, 8, and 10
were used in the fit to Tq. At rs � 1 and 10, Tq�EF goes
from 0.768 to 1.198. As rs ! 0, g�r� tends to g0�r�. The
UEG as rs ! 0 goes to a high-density fluid interacting via
the Pauli potential.

For any given rs, given the Tq from the paramagnetic
case, we can obtain gij�r� and Exc�rs, z , T � [21], at ar-
bitrary spin polarization z by solving the coupled HNC
equations. Unlike in many theories of electron fluids, the
PDFs obtained from the HNC procedure are positive defi-
nite at all rs. In Fig. 2 we show typical results for gij�r�
and comparisons with QMC simulations. Our results are
in excellent agreement with the DMC results. The deple-
tion hole for g12�r � 0� from DMC are in close agreement
and are deeper than those from VMC [13]. The difference
in VMC and DMC, even at rs � 1, Fig. 2(a), signals that
even when the Ec are in agreement, other properties may
have bigger errors. Figure 2(c) displays our paramagnetic
PDFs and those of DMC at rs � 1 and 10.

At present there is no reliable finite-temperature micro-
scopic theory to compare with the g�r , z , T � obtained by
FIG. 2. (a) Here the HNC g�r� are compared with VMC and
DMC simulation results: the interacting PDFs g11�r� and g12�r�
at rs � 1 are shown. Solid lines: HNC; boxes: DMC; dashed
line: VMC. (b) rs � 5, DMC, and HNC. In (c) the para-
magnetic g�r� at rs � 1 and rs � 10, T � 0 are compared
with DMC. (d) Finite temperature PDFs (HNC) for T�EF � 2,
rs � 5.

our HNC approach. The theory of Tanaka and Ichimaru
[5] improves on STLS and is more comprehensive. How-
ever, like in STLS, the g�r� has unphysical regions for rs

near 5. Figure 2(d) gives the g�r� at rs � 5, T � 2TF

obtained from HNC. The gij�r� is positive definite, as ex-
pected. Finite-temperature systems will be discussed more
fully in a future publication as they are relevant to doped
semiconductors and hot plasmas [22].

The Tq determined from the unpolarized Ec is used
to calculate Ec�rs, z , T � at any z . The QMC results for
Ec�rs, z � at T � 0 agree with ours, since our gij�r� agree
with those from MC. For example, at rs � 10, the spin-
polarized 2Ec is as follows: Ceperley-Alder, 0.0209 Ry;
Ortiz-Ballone, 0.0206 Ry; our method, 0.0201 Ry; Lantto
(Fermi-HNC), 0.0186 Ry; Kallio and Piilo, 0.0171 Ry [11].

The response x�k, v� of the interacting UEG is usu-
ally written in terms of a reference x0�k, v� and an LFC
denoted by G�k, v�. The simplest static form, G�k�, dif-
fers from G�k, 0�, especially at large k. The main thrust
of STLS [6], GT [3], UI (Utsumi and Ichimaru) [23] and
others has been to provide the G�k� as a function of rs at
T � 0. Even though UI begins as a basic theory, it actu-
ally relies on fit parameters constraining the G�k� to fits
to Monte Carlo Exc and derivatives, Yasuhara’s g�0�, etc.,
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FIG. 3. The local-field correction G�k�, Eq. (16), to the static
response at T � 0 and rs � 5. Results shown are as follows:
HNC; Utsumi and Ichimaru (UI) [23]; Vashista and Singwi (VS)
[6]; QMC [14]; Farid et al. (FHER) [8]; and Geldart and Taylor
(GT) [3]. QMC and FHER explicitly base their LFC on the
Lindhard x0 while some of the others are explicitly or implicitly
based on a x

0
I (see text).

i.e., quantities outside UI theory. FHER is a fitted form us-
ing over two dozen parameters. The only parameter of the
present model is Tq. It provides approximate G�k� compa-
rable to STLS and UI, involves only a few algebraic steps,
and holds for finite T as well. Thus consider the simplest
LFC, viz., G�k�, for a one-component fluid.

VCou�k�G�k� � VCou�k� 1 1�x�k� 2 1�x0�k� . (15)

For a classical fluid, x�k� can be expressed in terms of
bS�k�. Hence, for the paramagnetic case,

VCou�k�G�k� � VCou�k� 2 �T�n� �1�S�k� 2 1�S0�k�� .

(16)
In these expressions the x0�k� and S0�k� are based on
a Slater determinant, while the Lindhard function is ap-
plicable to the Hartree case. We display in Fig. 3 the
T � 0 LFC for rs � 5, and the LFCs of other methods.
The LFCs based on a x

0
I calculated with the interacting

density distribution tend to a constant for large k, viz.,
G�k, 0� ! 2�1 2 g�0���3, while G�k� ! 1 2 g�0�. Al-
though the theory of UI is based on a x

0
I , in practice the

Lindhard x0 is used. The fitted G�k, 0� of FHER is built
to behave like k2 at large k, being an LFC based on the
Lindhard form [24]. It can be shown analytically that the
HNC-LFC tends to 1 2 g�0� for large k, as required. Thus
it is seen that the approximate forms, QMC-LFC, as well
as the HNC-LFC, are in general agreement.

In conclusion, we have presented a simple classical map-
ping of a quantum-Fermi liquid for any spin polarization
962
and temperature T and shown that it quantitatively recovers
the quantum Monte Carlo PDFs at T � 0. The only pa-
rameter is a temperature mapping of the Exc. We have ex-
amined spin-dependent correlation energies, PDFs at zero
and finite T , as well as a simple approximation to the LFC
of the electron response at arbitrary T . The method has
potential applications to nonlocal Exc in DFT, 2D elec-
trons, Bose systems, and extensions to dynamical models
of quantum fluids.
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