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Symmetry-Breaking and Percolation Transitions in a Surface Reaction Model
with Superlattice Ordering

Da-Jiang Liu1 and J. W. Evans1,2

1Ames Laboratory, Iowa State University, Ames, Iowa 50011
2Department of Mathematics, Iowa State University, Ames, Iowa 50011

(Received 12 August 1999)

A symmetry-breaking order-disorder transition of the Ising type is found in a nonequilibrium surface
reaction model for CO oxidation incorporating superlattice ordering of adsorbed oxygen. We relate
this transition to the percolation of superlattice domains of oxygen, and discuss the consequences for
chemical diffusion of coadsorbed CO. The latter constitutes a new type of problem involving transport
in disordered media.
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Much of the impetus for studying chemisorption
systems has derived from the more challenging goal of
understanding and controlling catalytic surface reactions.
There has been considerable effort and success in using
surface-sensitive probes to characterize spatial ordering
or self-organization in nonreactive chemisorbed adlayers
on single-crystal substrates [1]. Furthermore, it is well
recognized experimentally that such ordering of the
adlayer persists during surface reaction [2], and that it
can even be modified by the adsorption and reaction
processes. In fact, the influence of islanding of reactants
on the reaction kinetics was explored in early studies,
although mainly with heuristic modeling [3]. Recent
studies of surface reactions have also examined the rich
variety of mesoscale spatial pattern formation exhibited
by these reaction-diffusion systems [4]. However, there
has been little consideration of the effect of ordering in
reactant adlayers on diffusion and pattern formation.

Atomistic lattice-gas models have been applied to
provide a sophisticated description of spatial ordering
and phase transitions in nonreactive equilibrated adlayers,
and to extract information on adspecies interactions
from the observed ordering [1]. The same approach
can potentially be applied to describe reactive systems.
However, most such modeling of surface reactions has
not incorporated key aspects of the process, such as high
surface mobility of some reactant species, e.g., CO in
CO oxidation [5], adspecies interactions, and “ensemble
requirements” of the adsorption process [6,7]. As a
result, the steady-state behavior [8] has exhibited non-
physical features (e.g., large fluctuations and negligible
hysteresis due to neglect of mobility, and continuous
poisoning transitions due to idealized interactions and
adsorption rules). Here we shall see that more realistic
models exhibit ordering and percolation behavior which
is in some respects analogous to, but also somewhat
different from, “corresponding” equilibrium behavior.

Specifically, in this Letter, we focus on the effect
of incorporating strong short-range repulsive adspecies
interactions into reaction models. Such interactions
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are present in many chemisorption systems, and pro-
duce superlattice ordering of the adlayer (with a
unit cell larger than that of the substrate). We show
that these interactions induce spontaneous symmetry
-breaking transitions in the nonequilibrium steady state of
the adlayer. These transitions, which could be observed
with LEED, are a direct analog of order-disorder transi-
tions in equilibrated adlayers [1], for which an ongoing
theoretical challenge is to provide a geometric interpreta-
tion [9]. We also take up this issue for the reaction model,
exploring the relationship between the symmetry-breaking
transition and the percolative properties of the superlattice
domains in the adlayer. Results even shed light on
behavior for equilibrated adlayers, which constitutes a
limiting case of the reaction model. The motivation for
characterizing adlayer structure in reaction models is
that this influences the chemical diffusion of coadsorbed
species (in this case, percolative diffusion along domain
boundaries), which in turn controls spatiotemporal be-
havior. Thus, we also analyze key features of this novel
transport problem.

We explore these issues using a lattice-gas model for
catalytic CO oxidation on a square lattice of adsorption
sites. This model incorporates the appropriate Langmuir-
Hinshelwood mechanism, very rapid mobility of adsorbed
(ads) CO, and infinite nearest-neighbor (NN) repulsions
between adsorbed oxygen resulting in checkerboard or
c�2 3 2� ordering (see Fig. 1). Specifically, the model in-
cludes the following steps.

(i) CO(gas) adsorbs onto single empty sites at rate pCO.
CO(ads) hops very rapidly to other empty sites on the sur-
face. There are no interactions between CO(ads) and other
CO(ads) or O(ads), except site exclusion, so the “infinitely
mobile” CO(ads) is assumed to be randomly distributed on
sites not occupied by O(ads).

(ii) O2(gas) adsorbs dissociatively at diagonal or second
NN empty sites at rate pO2 , provided that the additional
six sites adjacent to these are not occupied by O(ads). This
“eight-site rule” reflects the very strong NN O(ads)-O(ads)
repulsions [10].
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FIG. 1. c�2 3 2� domain structure. Empty and filled circles
denote O(ads) on different c�2 3 2� sublattices. Solid bonds
denote second NN domains. The two second NN domains at the
top form a single third NN domain. A NN vacancy domain dual
to the second NN c�2 3 2� domains, which also corresponds to
a domain boundary, is shown by the wiggly bonds. “�” denotes
an “isolated defect”.

(iii) O(ads) hops to NN empty sites with rate hO, pro-
vided that this process does not create any NN O(ads)-
O(ads) pairs.

(iv) Each adjacent pair of CO(ads) and O(ads) reacts at
rate k to form CO2 which immediately desorbs.

One feature of this model is bistability: a stable
“reactive” state with high O coverage, uO, and low CO
coverage, uCO, coexists with a stable “inactive” state with
uCO � 1 [6]. In this paper, we focus on the behavior of
the reactive steady-state. We note that our model is a vari-
ant of those considered recently in Refs. [6,7]. In contrast,
most of the previous work was based on the Ziff-Gulari-
Barshad model [11] and refinements with rapid CO mo-
bility [5], which assumed oxygen adsorption on adjacent
sites, and neglected adspecies interactions. This resulted
in an artificial oxygen poisoning transition, which is
absent in our model.

In this paper, we consider only the regime of large re-
action rate k (as in Ref. [7]). Together with the infinite
mobility of CO(ads), this implies that uCO is negligible in
the reactive steady state. We thus naturally map the model
onto a simpler single-species problem involving adsorp-
tion of O2(gas) dimers, and desorption (and hopping) of
O(ads) monomers. Dimer adsorption obeys the eight-site
rule with attempt rate pO2 . To determine the monomer
desorption rate, dO, note that the adsorption rate per site
of CO is pCO�1 2 uO�. In a steady state, this must be bal-
anced by the desorption rate per site for oxygen of dOuO,
so dO � pCO�1 2 uO��uO. Thus we are left with only
three adjustable parameters, pO2 , dO, and hO, and typically
present results in terms of the reduced oxygen adsorption
rate uO � pO2��pO2 1 dO�. Henceforth, we mostly drop
the subscripts.

We now provide a brief overview of steady-state be-
havior, and its dependence on oxygen mobility. Note that
oxygen is relatively immobile so that the case h � 0 is of
particular interest. However it is instructive to contrast be-
havior with the limit h ! ` which corresponds to the equi-
librium hard square (HS) model [12–14]. Figure 2 shows
956
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FIG. 2. Dependence of the O(ads) coverage on the reduced
O2(gas)-dimer deposition rate u � p��p 1 d�, for O(ads) dif-
fusion rates h � 0 and h � 5p. Also plotted is the result for
the hard square model, which corresponds to the h ! ` limit.

the dependence of steady-state O(ads) coverage, uO, on u,
for h � 0, 5p, and `. For lower uO, oxygen mobility with
h � 5p is sufficient to effectively equilibrate the adlayer.
However, for higher uO, the diffusion dynamics through
NN hopping is highly constrained [14], producing behav-
ior more like h � 0. We now comment further on behav-
ior in the limit u ! 1 (high oxygen adsorption rates). For
h � ` (the HS model), uO ! 0.5, the maximum allow-
able value. For h � 0, however, uO�u ! 1� � 0.4253 is
lower, since slow removal of oxygen by reaction produces
“isolated defects” within c�2 3 2� domains which cannot
be immediately filled by oxygen dimer adsorption. As h
increases, uO�u ! 1� increases, although very slowly, e.g.,
uO�u ! 1, h�p � 128� � 0.4336.

It is well known that the HS model (corresponding to
the reaction model with h � `) undergoes a symmetry-
breaking phase transition at uO � 0.367 743 [12] (and
uc � 0.909). Above this critical coverage, the particles
exhibit long-range c�2 3 2� ordering, i.e., an imbalance
develops in the coverages, u6, of the two c�2 3 2� sub-
lattices shown in Fig. 1. This transition is believed to be
second order within the Ising universality class [12].

To study the critical behavior of the reaction model for
h , `, we employ finite size scaling on L 3 L lattices
with periodic boundary conditions. The transition point is
located using a fourth order cumulant of the order parame-
ter QL � �m4���m2�2, where m � u1 2 u2 is the or-
der parameter and �· · ·� denotes the ensemble average.
Figure 3(a) shows QL as a function of u in the reaction
model with h � 0. As in equilibrium models undergoing
continuous phase transitions, curves for different L tend to
cross at the same point as L approaches infinity. We esti-
mate uc � 0.7135�5� and uc � 0.2964�6�. To obtain the
critical exponents, we use the following finite size scaling
form for some physical quantity P in an L 3 L system:

PL � Lx�nF��u 2 uc�L1�n	 , (1)
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FIG. 3. Finite size scaling (FSS) for the reaction model in the case h � 0. (a) QL�u� � �m4�L��m2�2
L; (b) �m2�2L��m2�L,

and (c) the spanning probability RL for second NN connectivity. Each data point is obtained through an average over
4 3 106 Mc steps.
where x and n are the critical exponents for P and the
characteristic length, and F�y� � yx , as y ! `. One can
determine both uc and x�n by plotting P2L�PL for differ-
ent L’s. As an example, Fig. 3(b) shows such scaling for
the fluctuations of the order parameter �m2� for h � 0. Us-
ing systems of L � 8 to 64, we estimate g�n � 1.748�5�
and separately n � 0.98�2�, consistent with the values 7�4
and 1, respectively, for the 2D Ising universality class.

Theoretical efforts to provide a geometric interpretation
for phase transitions in equilibrium systems were noted
above [9]. Along these lines, for the reaction model,
we first explore the relationship between the symme-
try-breaking transition and the percolative properties of
c�2 3 2�-O(ads) domains with second NN connectivity
(see Fig. 1). The motivation comes from consideration
of diffusion of coadsorbed CO in the reaction model.
If the dominant CO-diffusion mechanism is through
hopping between NN sites unoccupied by O(ads), then
the chemical diffusion coefficient vanishes at the second
NN percolation point. This follows since second NN
connectivity of c�2 3 2�-O(ads) domains is dual to NN
connectivity of the unoccupied domains on which CO can
diffuse (see Fig. 1).

Since percolation of a (second or third NN) c�2 3 2�
domain of one phase would block percolation of domains
of the other phase, by symmetry neither phase can per-
colate below the symmetry-breaking transition [15]. Thus
percolation could only occur either (A) at the phase transi-
tion or (B) above the phase transition. In scenario B, since
the correlation length is finite, percolation should belong
to the random percolation universality class. In scenario
A, a divergent correlation length can change the percola-
tion to a different universality class.

For the reaction model with h � 0, we find that sce-
nario B occurs, i.e., there is a finite gap between the per-
colation transition for the second NN connectivity and the
symmetry-breaking transition. Figure 3(c) plots the proba-
bility RL�u� that an L 3 L system percolates. As L ! `,
RL�u� approaches a step function and finite size scaling
predicts that RL�u� for different L should cross at the per-
colation point. Figure 3(c) clearly shows that the perco-
lation point is different from the ordering transition point.
We estimate the u2NN
p � 0.727�1� and u2NN

p � 0.3052�6�
for h � 0. As expected, critical exponents determined
from finite size scaling are consistent with the random per-
colation values.

For the hard square model (i.e., the reaction model with
h � `), previous simulations suggested the coincidence
of percolation and phase transition points [16]. Our more
extensive simulations [13] are consistent with this claim.
Figure 4 shows the finite size scaling result for the average
second NN cluster size sav �

P
s2ns�

P
sns, where ns is

the number of clusters of size s. We can determine both
the percolation point (for comparison with the ordering
transition) and the critical exponent from the intersecting
point of the curves.

One consequence of the percolation transition coincid-
ing with a second order phase transition in the HS model
is that the universality class can be moved away from that
of classical random percolation. Table I lists some critical
exponents for percolation obtained from finite size scal-
ing. The values quoted are normalized by the characteris-
tic length exponent n. The value of n is rather difficult to
determine using Monte Carlo (MC) methods, but is consis-
tent with the Ising value, i.e., n � 1. Here df is the fractal
dimension, and gp is the exponent for the average cluster
size. We also consider percolation of c�2 3 2� domains
with third NN connectivity (see Fig. 1), where the coinci-
dence with the phase transition is established [9]. These
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FIG. 4. FSS of the average cluster size sav for the second NN
connectivity in the HS model. The vertical dotted line indi-
cates the critical activity zc � 3.796 26 for the ordering transi-
tion [13]. The corresponding y value is 2gp �n .
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TABLE I. FSS results for the HS model. Values obtained are
consistent with the scaling relation g̃p 
 2�df 2 1�.

df g̃p df g̃p df g̃p

(2NN) (2NN) (3NN) (3NN) (vac) (vac)

1.947(1) 1.895(2) 1.948(2) 1.897(2) 1.390(6) 0.80(1)

exponent values differ significantly from random percola-
tion where df � 91�48, gp � 43�18, and n � 4�3. Also
distinct from random percolation is the behavior of the
spanning probability RL which is central to renormaliza-
tion group calculations. Numerical evidence suggests that
RL�up� assumes a value very close to 1 rather than 1�2 as
for random percolation [17].

We also study the percolation of vacancy clusters with
NN connectivity, because of the relevance to CO diffusion
in the reaction model. The percolation point must coincide
with that for second NN c�2 3 2� domains because of the
above-mentioned duality. When h � 0, we find random
percolation values for critical exponents, as for the second
NN c�2 3 2� domains. For the HS model, we find much
smaller df and gp than in all other cases (see Table I).
This feature is clarified by configuration snapshots which
reveal that vacancy clusters are less ramified than in the
case h � 0. As noted above, the CO diffusion coeffi-
cient, D, vanishes at this percolation point for CO diffusion
via hopping between adjacent unoccupied sites. Near the
critical point, one has D � �u 2 up�m. For the HS model,
a numerical study using a node elimination method [18]
shows that m�n has a larger value 1.41(3) than the ran-
dom percolation value of 0.98 (applying for h � 0) and
strongly violates the Alexander-Orbach conjecture that im-
plies m�n � df�vac��2. Thus, this CO-diffusion problem
reveals a new type of behavior for transport in disordered
media [19].

There remains the basic question of how the order-
disorder and percolation behavior changes as the hop-
ping rate h for O(ads) varies from 0 to `. Critical
slowing down near the transition impedes MC analysis
of this issue. However, numerical evidence suggests that
the gap between second NN percolation and symmetry-
breaking transitions vanishes at about h � 0.1p. Intu-
itively, this is plausible. As h increases, the coverage at
the ordering transition becomes significantly larger than
the percolation point of 0.29637 if one of the sublattices
is occupied randomly. Thus for large h, one might expect
percolation to occur as soon as it is possible (i.e., right at
the symmetry-breaking transition). From another perspec-
tive, one might argue that a finite gap between second NN
percolation point and ordering transitions seems counter to
the physical intuition that long-range order can only occur
when the system exhibits long-range “communication”
via percolation [9]. However, one can argue that dimer
deposition introduces an effective “interaction” of longer
958
range than NN. Therefore, in order to ensure coincidence
between the symmetry-breaking and percolation transi-
tions, we need longer-range connectivity. Indeed, we find
that third NN percolation does coincide with the ordering
transition point for all h including h � 0.

In summary, using Monte Carlo simulations, we reveal
the existence of a c�2 3 2�-O(ads) order-disorder transi-
tion in a reaction model for CO oxidation, which is of sec-
ond order and in the Ising universality class. We found that
coincidence of this transition with percolation of second
NN c�2 3 2� domains occurs only for sufficiently mobile
O(ads), where adlayer structure is closer to the HS model.
The relationship between these impacts the behavior of CO
diffusion, which controls pattern formation.
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