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Minimum Thermal Conductivity of Superlattices

M. V. Simkin and G. D. Mahan
Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996-1200

and Solid State Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831
(Received 23 July 1999)

The phonon thermal conductivity of a multilayer is calculated for transport perpendicular to the layers.
There is a crossover between particle transport for thick layers to wave transport for thin layers. The
calculations show that the conductivity has a minimum value for a layer thickness somewhat smaller
then the mean free path of the phonons.

PACS numbers: 66.70.+f, 68.65.+g
The thermal conductivity is a fundamental transport pa-
rameter [1]. There has been much recent interest in the
thermal conductivity of semiconductor superlattices due to
their possible applications in a variety of devices. Efficient
solid state refrigeration requires a low thermal conductivity
[2]. Preliminary experimental and theoretical work sug-
gests that the thermal conductivity of superlattices is quite
low, both for transport along the planes [3,4], or perpen-
dicular to the planes [5–8]. The heat is carried by exci-
tations such as phonons and electrons. Most theories use
a Boltzmann equation which treats the excitations as par-
ticles and ignores wave interference [7,9]. These theories
all predict that the thermal conductivity perpendicular to
the layers decreases as the layer spacing is reduced in the
superlattice. The correct description using the Boltzmann
equation would be to use the phonon states of the superlat-
tice as an input to the scattering, but this has not yet been
done by anyone.

We present calculations of the thermal conductivity per-
pendicular to the layers which include the wave interfer-
ence of the superlattice. These calculations, in one, two,
and three dimensions, always predict that the thermal con-
ductivity increases as the layer spacing is reduced in the
superlattice. This behavior is shown to be caused by band
folding in the superlattice. It is a general feature which
should be true in all cases. The particle and wave calcu-
lations are in direct disagreement on the behavior of the
thermal conductivity with decreasing layer spacing. This
disagreement is resolved by calculations which include the
mean free path (mfp) of the phonons. For layers thinner
than the mfp, the wave theory applies. For layers thicker
than the mfp the particle theory applies. The combined
theory predicts a minimum in the thermal conductivity, as
a function of layer spacing. The thickness of the layers for
minimum thermal conductivity depends upon the average
mfp, and is therefore temperature dependent.

The particle theories use the interface boundary resis-
tance [10] as the important feature of a superlattice. A su-
perlattice with alternating layers has a thermal resistance
for one repeat unit of RSL � L1�K1 1 L2�K2 1 2RB,
where �Lj , Kj� are the thickness and thermal conductiv-
ity of the individual layers, and RB is the thermal bound-
ary resistance. For simplicity assume that L1 � L2 � L,
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which is often the case experimentally. The effective ther-
mal conductivity of the superlattice is then

KSL �
2L
RSL

�
2L

L�1�K1 1 1�K2� 1 2RB
. (1)

This classical prediction is that the thermal conductivity
decreases as the layer thickness L decreases [9].

The wave theory calculates the actual phonon modes
vl�k� of the superlattice, where l is the band index. They
are used to calculate the thermal conductivity from the
usual formula in d dimensions [1],

K�T � �
X
l

Z ddk
�2p�d

h̄vl�k� jyz�k�j�l�k�
≠n�v, T �

≠T
,

(2)

where n�v, T � is the Bose-Einstein distribution function.
A rigorous treatment uses Boltzmann theory applied to
the transport in minibands to find the mean free path
�l�k�. At high temperatures, one can approximate n �
kBT�h̄vl�k�, which gives the simpler formula

K�T � � kB

X
l

Z ddk
�2p�d

jyz�k�j�l�k� . (3)

The above formula is quite general. There are two im-
portant special cases of constant relaxation time �Kt� and
constant mfp �K��

Kt�T � � kBt
X
l

Z ddk
�2p�d

yz�k�2, (4)

K��T � � kB�
X
l

Z ddk
�2p�d

jyz�k�j . (5)

Both of these formulas can be related to the distribution
P�yz� of phonon velocities perpendicular to the layers

P�yz� �
X
l

Z ddk
�2p�d

d�yz 2 jyz�k�j� , (6)

Kt � kBt
Z

dyzP�yz�y2
z , (7)

K� � kB�
Z

dyzP�yz�yz . (8)

Wave interference leads to band folding [11,12]. Band
folding leads to a reduction of the phonon velocities. Both
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Kt and K� are reduced by wave interference. The case of
constant mfp in one dimension can be reduced to a simple
formula

K� �
kB�

2p

X
l

Z
dk

Ç
dv

dk

Ç
(9)

�
kB�

2p

X
l

�vmax
l 2 vmin

l � (10)

�
kB�

2p
�vmax 2 �energy gaps�� . (11)

The integration is eliminated.
These assertions are best illustrated in one dimension,

that is with the atomic chain. The simplest model for a su-
perlattice has all spring constants identical, and the layers
differ in their masses. Layer one has N�2 atoms of mass
m1 and layer two has N�2 atoms of mass m2 � m1�a.
The characteristic matrix for phonons is given below for
the case N � 6

M �

ØØØØØØØØØØØØØØ

2 21 0 0 0 2e2ikN

21 2 21 0 0 0
0 21 2 21 0 0
0 0 2a 2a 2a 0
0 0 0 2a 2a 2a

2aeikN 0 0 0 2a 2a

ØØØØØØØØØØØØØØ
.

(12)

Setting the determinant jjM 2 v21jj to zero gives the
characteristic equation (the easiest way to derive it is
to utilize the similarity of the present problem to the
Schrödinger equation with the Kronig-Penney potential)
k�v� of [13–15]

cos�kN� � cos�k1N�2� cos�k2N�2�

2
1 2 cos�k1� cos�k2�

sin�k1� sin�k2�
3 sin�k1N�2� sin�k2N�2� , (13)

where cos�k1� � 1 2 v2�2, cos�k2� � 1 2 v2��2a� de-
fine the wave vectors �k1, k2� in the individual layers
in dimensionless units. A typical spectrum is shown
in Fig. 1, where a � 2 and the superlattice periods
are N � 2, 4, 8, 16. Modes with frequency v . 2 are
confined within the layer of the lighter atoms, and
contribute little to the thermal conduction. As the value
of N is increased in Fig. 1, there is more band folding,
and the average velocity decreases. The lower curve
in Fig. 2 shows the thermal conductivity as a function
of superlattice period. The result for constant mfp is
normalized to kB�v2,max, where v2,max � 2 is the maxi-
mum phonon frequency in the layer 1 of heavy mass.
The heat conduction is highest at small values of N ,
and rapidly decreases as N increases. It also shows an
irregular nonmonotonous behavior which we understand
and which will be discussed elsewhere. This result is for
one dimension. Similar curves are found for every case
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FIG. 1. Spectrum of N � 2, 4, 8, 16 superlattices with mass
ratio a � 2 in the extended zone representation.

which we have calculated: for different values of mass
ratio a, and for both K� and Kt . Generally, increasing
N (i) increases the amount of band folding, (ii) decreases
the average velocity in the superlattice, and (iii) decreases
the thermal conductivity.

Lower curves in Figs. 3 and 4 show similar calculations
of K� for mass ratio a � 2 in two and three dimensions.
Including only nearest-neighbor interactions, the charac-
teristic matrix (12) is changed only in its diagonal element,
where 2 is replaced by 2�2 2 cos�q�� in two dimensions,
and 2�3 2 cos�qx� 2 cos�qy�� in three dimensions. Here
�q, qx , qy� are the wave vectors within the planes. These
variables are integrated to find the result for the heat con-
duction. These cases also have the feature that the thermal
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FIG. 2. Heat conductivity in one dimension as a function of
the superlattice period for mass ratio a � 2 for different values
of the phonon mfp which are given in units of lattice periods.
Dimensionless units found by dividing (11) by 2kB�.
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FIG. 3. Thermal conductivity in two dimensions as a function
of the superlattice period for mass ratio a � 2 for different
values of the phonon mfp which are given in units of lattice
periods. (In units of thermal conductivity of a uniform system
of the heavier atoms.)

conductivity falls with increasing value of layer thickness.
The curve is now smooth, due to the averaging over the
parallel wave vectors. Similar results are found for all val-
ues of a.

In these calculations the thermal boundary resistance
seems to have disappeared. Note that our model does pre-
dict thermal boundary resistance for a single interface [16].
The scattering of phonon waves at the interface causes
the thermal resistance. This scattering is included in the
present calculation. However, it also causes band fold-
ing, which is a bigger effect than the thermal boundary
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FIG. 4. Thermal conductivity in three dimensions as a function
of the superlattice period for mass ratio a � 2 for different
values of the phonon mfp which are given in units of lattice
periods. (In units of thermal conductivity of a uniform system
of the heavier atoms.)
resistance. The wave calculation predicts that in three di-
mensions the thermal conductivity increases as the layer
spacing is decreased, which is exactly the opposite of
the particle calculation which predicts that it decreases.
Since the effect is due simply to band folding, which is
a well-documented phenomena, then the prediction must
be accurate. Several prior calculations predicted behavior
similar to that shown in Figs. 2–4 [17,18]. However, no
explanation was given for the behavior.

The missing ingredient in these calculations is the mean
free path of the phonons. When the layer thickness ex-
ceeds the mfp, then interference effects should diminish,
and the particle model should become applicable. Our in-
tuition is that the wave model should apply when L , �
and the particle model should apply when L . �. A phe-
nomenological method of including � is to add a complex
part to the wave vector k which is i��. Then recalculate
the properties of the superlattice using Eq. (13). This idea
came from Pendry [19] who did the same thing for electron
energy bands (and provides a more complete justification
for this model): energy gaps go away if one includes a fi-
nite mfp. A similar result is found for phonons. The band
gaps diminish to zero as the mfp is decreased for a fixed
value of N .

Upper curves in Figs. 2–4 show the thermal conduc-
tivity in one, two, and three dimensions as a function of
the superlattice period for four different values of mfp and
a � 2. The mfp is given in terms of the number of lattice
spacings (note: not superlattice spacings). Similar curves
are found for other values of a. For large values of � the
results are identical to the lower curve (which has � � `).
For small values of mfp �� � 10� the thermal conductivity
is nearly independent of superlattice period, except where
it falls at small values of N .

The interesting cases have � � 50 or 100. Here the
thermal conductivity falls as N increases, reaches a
minimum, and then starts to increase. This latter behav-
ior is the situation expected in the experiments. At room
temperature, in most solids, anharmonic scattering limits
the phonon mfp to value in the range of 10–100 lattice
constants, which is also the typical value of superlattice
parameter in current devices. Therefore we expect the
experimental thermal conductivities to behave as the
curves marked � � 50, 100 in Figs. 2–4. The thermal
conductivity should have a minimum value when plotted
vs superlattice period. The minimum occurs at the
crossover between the particle and wave-interference
types of transport. One experimental result has this be-
havior [20].
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