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Local Size Segregation in Polydisperse Hard Sphere Fluids
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The structure of polydisperse hard sphere fluids, in the presence of awall, is studied by the Rosenfeld
density functional theory. Within this approach, the local excess free energy depends on only four
combinations of the full set of density fields. The case of continuous polydispersity thereby becomes
tractable. We predict, generically, an oscillatory size segregation close to the wall, and connect this,
by a perturbation theory for narrow distributions, with the reversible work for changing the size of one

particle in a monodisperse reference fluid.
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Understanding the behavior of polydisperse systems is
relevant to many materials of practical interest. In par-
ticular, colloidal and/or polymeric fluids generally contain
particles which have, in effect, a continuous distribution of
sizes (and/or other parameters such as charge and chemical
composition). This affects their performance in applica
tions ranging from foodstuffs to polymer processing [1].
More fundamentally, colloidal systems also provide the
closest experimental approach to the “theoristsideal fluid,”
namely, that of perfect hard spheres [2]. The fact that all
colloids are in practice polydisperse (at least dightly) must
then be taken into account in comparing theory with ex-
periment. Only recently has experimental work started to
clarify in a systematic way the generic consequences of
polydispersity, such as the partitioning of sizes between
coexisting phases [3].

Despite the continuous interest polydisperse fluids have
raised, their theoretical understanding remains far from
complete, especialy for inhomogeneous cases. More is
known about partia structure factors in single-phase flu-
ids [4,5] and liquid-liquid phase equilibrium [6,7] than
about crystalline phases [8] or interfacial properties, for
example. And, where such inhomogeneous situations have
been studied [9] it has often proved necessary to assume
that only the mean density, and not the size distribution,
can vary in space [10]. This ignores size segregation ef-
fects, which (globally) influence the phase diagram [3,7].
A similar tendency to local segregation isimplicit in treat-
ments of binary and ternary hard sphere mixtures [11—-13]
and in polydisperse equilibrium structure factorsin the ho-
mogeneous state [4].

In what follows, we treat continuous polydispersity
within a density functional theory (DFT) that properly
alows for loca size segregation. Our work is based on
a choice of density functiona (that of Rosenfeld [14])
that has previously been used to study finite mixtures of
hard spheres. By exploiting the fact that its excess free
energy density depends on only a small number of linear
combinations of the particle densities (four “moment
densities’), we are able to address the case of continuous
polydispersity, where the underlying densities are infinite
in number. This alows us to study, e.g., the effects of
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varying the shape of a smooth size distribution. Moreover,
by a perturbative analysis of the same functional, we can
distinguish certain generic features that do not depend
on the shape of the parent, if it remains narrow. These
two aspects of our work build on recent nonperturbative
[15] and perturbative [3,16] progress in understanding
polydisperse phase equilibria.

The state of a polydisperse fluid is specified by the lo-
cal number density of each species, p(o,r), with o the
particle diameter (let us say). The spatial average of this
guantity must recover the (known) global size distribution,
p (o), which we call the “parent.” According to DFT, the
grand potential is some (unknown) functional of p(o,r).
Given an approximation to this functional, the key prob-
lem of polydispersity is the need to find, by its minimiza-
tion, an infinite set of densities at each point in space. A
naive discretization into, let us say, N = 50 species does
not make this much easier: the minimization problem re-
mains of very high dimension (we have N functions of d
spatial coordinates, with d the effective space dimension;
d =1 for afluid near aflat wall).

The problem of free energy minimization in avery large
space arises already in the calculation of phase diagrams,
where it has been found that, for many purposes, the prob-
lem can be exactly projected onto a subspace involving
a few linear combinations (or “moments’) of p(o) [15].
The approach requires that the excess free energy can be
expressed in terms of the chosen moments; thisis true for
many approximate theories including polymer mean-field
theories and liquid state models such as the Percus-Yevick
equation of state (PY) [17,18].

We now observe that essentialy the same simplifi-
cation is possible with certain (approximate, but well-
established) density functionalsfor inhomogeneous liquids
[17]. We choose for definiteness that of Rosenfeld [14]
for hard spheres, as subsequently recast by Kierlik and
Rosinberg [19], whose nonideal part is afunctional of four
moment densities defined, from the underlying density
profile p(o,r), as follows (with @ = 0, 1,2, 3):

Mg (r) = / dodr' p(o,r)w.(o, v —r|). (1)
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Here w, (o, |r’ — r|) are four weight functions, selected
[14,19] such that PY is recovered for a homogeneous
mixture. Note that only four moment densities are needed,
irrespective of the number of components of the mixture;
this follows from PY itself, whose nonideal part F<*(m,)
involves only the four moments m, = [do p(o)o®.
However, the weight functions w, are nonlocal: our
moment densities m, (r), though intimately related to the
four PY moments, are not merely local values of them.
Within this description, the grand potential becomes

Q= [dr da{p(o,v){IN[A*(o)p(o,r)] — 1}
+ [V(o,r) — w(o)]lp(o,r)}

+ f dr F&(mg(r)), 2

where u(o) is the chemical potential of species o in the
bulk, A(o) is a thermal wavelength [6], V(o,r) is the
external potential acting on species o, and F*(m,) =
—moIn(1 = m3) + myma/(1 — m3) + mj3 /[247(1 — m3)?]
gives the usua PY result [17]. Minimization of Eq. (2)
leads to Eq. (1) with

p(o.r) = R(o)exp{—BV(o,r) + &(o,r) — &(o, %)},
©)

¢lo,r) = —Zf dr’ 0F

B am,g
Here ¢(o, =) isthe value of the excess chemical potential,
and R(o) isthe density distribution, in the bulk.

For a localized potential V (such as a hard wall), and
for any other case where the densities differ from their
bulk values only in afinite neighborhood, R(o) coincides
with the parent p (o) in the thermodynamic limit [20], and
is known in advance. Equations (1), (3), and (4) are then
closed in the low-dimensional function space spanned by
{mq(r)}. Their numerical evaluation delivers [via Eq. (3)]
the full density profile, but nonetheless proceeds asif there
were only four species present. Note that the four moment-
density profiles depend [through Egs. (1) and (3)] on R(o),
so that the final results, even for the m,, (r) themselves, still
depend on all moments of the parent distribution.

Of course, not all density functionalsin common use are
of the required “moment density” form [17]. But Eq. (2)
performs as well as most other functionals proposed in the
literature [13]; for example, depletion forcesin binary flu-
ids are well recovered by it [21]. For numerical use below
we retain the original weight functions[14], although some
recent modifications are known to give a better description
of solid phases [22]; these modifications would not alter
the conceptual structure of our analysis.

We now focus on the effect of polydispersity in afluid
of hard spheres near a flat hard wall. We fix the parent
size distribution R(o) = p(o, o), and thereby the chemi-
cal potentials of all species in the bulk, and analyze the

wglo,Ir" —rl). (4
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structure asafunction of distance z from thewall. We have
considered fluids with a Gaussian, an exponential, and a
uniform (top hat) distribution of sizes; each is character-
ized by its mean (which we set as ¢ = 1 without loss of
generality) and its standard deviation (which is then called
the polydispersity, p, and is expressed in percent). We dis-
regard any transverse ordering, which is reasonable for a
fluid, except possibly close to the fluid/solid transition.
For al the parents considered, we find significant
local size segregation, with a strong, local cross corre-
lation between particles of different sizes. This effect
can be observed in Fig. 1, where we display the local
relative concentration of various species, ¢(o,z) =
p(a.2)/ [do p(c,z), for the case of a top-hat parent
with p = 11.5%. Clearly visible are strong, anticorrelated
oscillations in the relative amounts of large and small
particles, whereas the relative concentration of particles
close to the mean size (¢ = 1) is much more nearly
constant. Qur definition of ¢ (o) factors out the primary
oscillations in the mean density (depicted in Fig. 2), but
we find that the size distribution (Fig. 1 insets) oscillates
roughly in quadrature to the mean density. In this manner,
without greatly altering the overall density profile, smaller
particles are accommodated on the inner (near-wall) side
of each successive density peak and larger particles on
the outer side. Thus the density of each species can,
within the first few layers at least, oscillate with a spatial
period close to its own diameter. (The same could not
continue indefinitely: the nature of any size segregation
in ordered phases thus remains an important, open issue.
Moreover, the asymptotic decay of the density profile for
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FIG. 1. Profiles for the local concentration of several species
for a flat parent with p = 11.5%, a mean volume fraction
n = 0.4. The mean diameter is taken as the length unit. The
curves for o = 0.8 and o = 1.2 have been vertically displaced
to aid comparison. Insets: Size distribution at different z.
(a) Dashed line, z = 0.5; solid line, z = 0.8. (b) Solid line,
z = 1.2; dashed ling, z = 1.6. (c) Solid line, z = 2.4; dashed
line, z = 3.2; dotted-dashed line, z = 4.7.
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FIG. 2. (a) Density profiles for the mean species with a flat
parent, setting & = 1, compared with the profile of a monodis-
perse fluid at the same mean volume fraction, n = 0.4. (b) Re-
duced loca concentration profiles, for a Gaussian parent
(p = 2.4%) a n = 0.45, compared with ¢/(z) — ¢/() from
the monodisperse fluid at the same 7, thick continuous line.
The thin continuous line refers to the local concentration of the
mean species. This curve is not reduced but has been shifted
vertically so that it tends to zero at large z.

any mixture is given by a single wavelength [23].) As
the polydispersity of the parent increases, the trend we
have outlined persists, although it blurs, and the uniform
relative concentration of the mean species is lost. The
behavior is generic for all the different size distributions
tried and can also be seen in ternary (or even binary)
mixtures [13].

We can gain further insight into this behavior by a per-
turbative analysis for a narrow parent, analogous to that
used previously for phase coexistence [16]. We express
the particle diametersas o = (1 + €); we then expand
in small e around a monodisperse density profile for that
species. The perturbative result is (to order €) [13]

R(O’) m - a,z2)—V(r,z
P = p" (z)e AV (7= (@:]
X {1 + €[&'(z) — &'()]}. (5)

Here p(z) is the density profile for the monodisperse
system, and ¢/(z) is the reversible work coefficient for
slightly changing the size of one particle, z from the wall,
within an otherwise monodisperse system. This obeys

d
Z‘I(r) = ; E(U’r)lezo,p—ﬂ > (6)
which can easily be computed from Eq. (4). We have
assumed that € < 1 for al members of the parent, but
not that e <« p; thisiswhy there is no expansion made of
the factor R(o) in Eq. (5). Likewise for a hard wall it is
inappropriate to expand V (o, z).

These perturbative cal cul ations predict that the profile of
the “mean species’ is, to order €, identical to a monodis-
perse fluid at the same overall density. This agrees with
Fig. 2a, where we compare the mean-species profiles for
flat parents of varying polydispersity. Curves for other
parents (not shown), but with matched polydispersity, are
barely distinguishable on such a plot, even when this is
over 10%. More generally, Eq. (5) shows that al the or-
der e deviations from monaodisperse behavior, for parents
of different shapes, should fall on a common curve if the
densities p (o, z) are first normalized by R(o). We have
verified this by comparing p (o, z)/R(o) for small fixed
€, among parents of different shapes [13].

An illuminating application of the perturbation theory
is to the local concentration profiles shown in Fig. 1. Ac-
cording to Eg. (5), in any region where the external poten-
tial does not depend on the radius of the particles,

$(0.2) = plo. @) {1 + €[c'(z) — '), (7)

which shows, to order e, that the local concentration of
the mean species is strictly constant, and that by an ap-
propriate scaling, the concentration profiles for different
particle sizes collapse onto a single curve. These predic-
tionsare confirmed from the full (nonperturbative) solution
for a narrow Gaussian parent in Fig. 2b. The size oscil-
lations are, as predicted, directly linked to the reversible
work term, ¢/(z), for changing the size of one particle. Al-
though the data collapse is mostly excellent, the constancy
of the mean species concentration is imperfect close to the
wall even for narrow (2.4%) polydispersity. This may be
because the perturbative expansion itself fails very close
to ahard wall, where the potential forces the concentration
of certain species to be zero. (This is visible in the first
inset in Fig. 1.) The same problem should not arise for a
smoothly varying potential.

We now turn to thermodynamic properties of our system.
We have integrated the density and the energy profiles to
find the adsorption I'" and the surface tension, v [17]. In
Fig. 3 we show the I" as a function of the volume fraction,
for different parents and polydispersities. It appears that,
until the parent becomes relatively wide, the values of the
measured adsorptions do not differ significantly from the
monodisperse case. Indeed, our perturbative calculations
show the deviation, and that of the surface tension [13], to
be of order p2. But in fact the deviations are only small if,
as shown, one uses well-chosen moments to scale the plot
(effectively, I'my/my vs m3). These scalings are suggested
by, e.g., scaled particle theories for the adsorption [24];
with different choices, there are deviations of up to 30%
in the same data. The same generic features are observed
for the surface tension, displayed intheinset in Fig. 3. For
the exponentia parent, as the polydispersity increases, the
surface tension becomes more negative.

In this Letter we have considered the effect of polydis-
persity on the structure of an inhomogeneous hard sphere
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FIG. 3. Adsorption for different parents. Gaussian: 2.4%, 7%,
12%; exponential: 9%, 23% (cutoff at a minimum o of 0.91 and
0.77, respectively), flat: 4%, 12%, 19%. Inset: surface tension
for the same parents.

fluid. We have shown that the use of moment densities
makes DFT apractical tool to study inhomogeneous fluids
of continuous polydispersity, in which loca size segrega-
tion can play amajor role. Thiswasillustrated by studying
apolydisperse fluid near awall, which clearly shows such
effects (see Fig. 1). A perturbative analysis confirmed the
generic features of such segregation. We can also obtain
agenera relation that connects the ratios of differencesin
the local moments [evaluated from p(o,r) at two differ-
ent points] to ratios of higher moments evaluated for the
parent [13]. Such findings generalize similar O (¢) results
for phase partitioning [3,16]; for these purposes, it is asif,
in DFT, each point in space counts as a different “ phase.”

We note finally that some of our perturbative results
(including those just described) are surprisingly general.
For example, Eg. (5), which connects the species densi-
ties to the local reversible work of enlarging a particle in
the monodisperse limit, makes no assumption about the
choice of density functional. Hence it holds for the true
functional, whatever it may be [25]. Thus the choice of
physical system (hard spheres), and of approximate func-
tional [Eq. (2)] enters only through the particular form of
¢'(r) [Eq. (6)]. Equation (5) is thus an exact result for any
dlightly polydisperse isotropic fluid; moreover, the poly-
disperse feature (o) need not even be size, but could be
charge, or any other scalar quantity.
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