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Domain Growth in Ternary Fluids: A Level Set Approach
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We analyze phase separation in ternary systems in the asymptotic hydrodynamic regime when the
volume fractions and concentrations are constant. The multiphase Navier-Stokes equations are solved
using a level set method. A new projection method was developed to treat multiple junctions for systems
with more than two phases. It is found that surface tension ratios can alter the growth mechanism of a
minority phase in the presence of two majority phases. When the minority phase wets the interface of
the majority phases the domain growth rate of all three phases is initially similar to that of a symmetric
binary fluid but slows down at later times.

PACS numbers: 47.55.Kf, 47.20.Hw, 64.75.+g
Many systems of scientific and technological interest
are multicomponent mixtures that undergo separation into
multiple phases. The diffusion driven phase separation dy-
namics of A-B-C ternary mixtures decomposing into two
and three phases was recently studied experimentally [1]
and by numerically solving the nonlinear spinodal decom-
position (NLSD) equations for the time evolution of a con-
centration field [2,3]. The decomposition into three phases
leads to fascinating microstructures. Mixtures with a mi-
nority C component initially decompose into two unstable
A-rich and B-rich majority phases. The minority C com-
ponent segregates at the A-rich/B-rich interface as soon as
the decomposition is initiated to decrease the A-B inter-
facial energy [4], in agreement with polymeric thin film
experiments [1]. This adsorption results in higher con-
centration of C at the junction of multiple majority phase
boundaries. Therefore, the coarsening of the metastable
minority phase rich in C occurs at the vertices of majority
phase boundaries in agreement with classical nucleation
theory. Though the kinetic growth laws of diffusion in-
duced separation are the same as in binary systems, the
actual separation process was found to be considerably
slower than in binary systems. Indeed, it is a common
practice to add minority components to A-B mixtures to
increase their miscibility and to slow down the phase sepa-
ration kinetics [5]. We show here that in the later stages
of the decomposition the coarsening kinetics of minority
metastable phases in ternary incompatible fluids can actu-
ally be much faster than that of minority phases in binary
fluids due to hydrodynamic flow. However, the growth of
the majority A and B phases at long times can be slower
when a minority C component is added if C wets the A-B
interface.

In unstable binary fluid systems undergoing phase
separation a fast hydrodynamic growth mode is possible
during the late stages of the decomposition [6–8]. Recent
work has focused on simulating hydrodynamic growth by
a variety of methods including lattice-Boltzmann [9,10],
time dependent Ginzburg-Landau [11,12], molecular dy-
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namics [13], and dissipative particle dynamics [14]. To
include hydrodynamic effects, these methods typically
modify the equations that describe evolution of the local
concentrations due to diffusion by coupling them to the
fluid velocity. In the late stages, when the volume frac-
tions and composition of the phases are constant, however,
hydrodynamics is the dominant mechanism for coars-
ening. In this asymptotic hydrodynamic regime, all the
dynamics are generated by sharp interfaces. Therefore, it
is essential to determine the position and topology of the
interfaces in numerical simulations accurately and effi-
ciently. This is a major difficulty in the numerical model-
ing of multiphase fluid motion. In this Letter we, for the
first time, study hydrodynamic coarsening by solving the
multiphase Navier-Stokes equations directly, using a level
set method for interface capturing. In our approach the
relevant parameters in the late stages of the decomposi-
tion—viscosity, density, and surface tension—are speci-
fied macroscopically rather than being determined from
another set of parameters. The level set method is de-
signed to model sharp interfaces. Thus it can even be
applied to strongly incompatible fluids that cannot mix at
all on nano or microscopic length scales but can only be
mixed mechanically up to certain length scales.

The level set method advances a function f�x, T �, where
x is position and T is time, defined such that the zero con-
tour of f�x,T � specifies an interface. The correct interfa-
cial motion can be modeled by advecting f�x, T �:

≠f

≠T
� 2�v ? =�f . (1)

The velocity v�x, T � is obtained from the Navier-Stokes
equation

≠v
≠T

1 �v ? =�v �
F
r

2
1
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=P 1 n=2v , (2)

where F�x, T � is the force acting on the fluid, r is den-
sity, P�x, T � is pressure, and n is kinematic viscosity. We
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assume constant viscosity and density throughout the fluid.
The force due to surface tension can be expressed as

F �
X

i�A,B,C

s0
id�fi�k�fi�n̂ , (3)

where d�fi� is the Dirac delta function of fi�x, T �, the
zero level set of fi defines the phase i interface, k�fi� is
the local interfacial curvature, and n̂ is the normal to the
interface. For the ternary case we have defined a separate
level set function fi for each phase. The modified surface
tension coefficients s

0
i are defined such that the standard

surface tension coefficient for an interface between phases
A and B is given by sAB � s

0
A 1 s

0
B. The motion of

the interface is obtained from solving (1)–(3). Also a
reinitialization of f is done after every time step in order
to maintain j=fj � 1 without shifting the zero contour
[15,16]. In two dimensions we solve the equations for
the scalar vorticity v obtained by taking the curl of (1),
with vẑ � = 3 v . This allows for the elimination of the
pressure term.

The level set approach provides an efficient and accu-
rate tool for modeling interfaces evolving under complex
motion. A level set function fi�x, T � is defined as the
signed distance to the phase i interface. The magnitude of
fi�x, T � represents the shortest distance between the po-
sition x and the interface. The sign of fi�x, T � is positive
within phase i and negative outside of it.

For a binary fluid only one level set function is necessary
to track the interface between the two phases. In general,
N 2 1 functions are needed to describe the morphology
of an N phase system. Although it is simplest to evolve a
set of N 2 1 level set functions, �f1 · · · fN21�, this has the
undesirable feature of not handling all N phases identically
for N . 2. However, if each fi in the full set �f1 · · · fN�
is evolved independently, numerical error can create over-
laps (where two or more fi’s are positive) and vacuums
(where all fi’s are negative), particularly at triple junc-
tions. We have developed a novel mapping of �f1 · · · fN�
onto a N 2 1 dimensional space which maintains the de-
sired symmetry between the phases. It can be shown that
the set of allowed values for �f1 · · · fN� forms a N 2 1
dimensional manifold M immersed in RN , made up of the
union of N�N 2 1��2 pieces of hyperplanes. A one to one
mapping from M to RN21 is done by means of a simple
Euclidean projection along the �1, 1, . . . , 1� direction into
the N 2 1 hyperplane

PN
i�1 fi � 0. This construction

allows us to represent �f1 · · · fN� by N 2 1 functions
while treating all of the phases equally. Because M con-
tains only the acceptable values of �f1 · · · fN� the creation
of overlaps and vacuums is avoided. This method can be
used in any number of dimensions and handles topological
changes naturally.

We first consider a 50�50 binary fluid where both fluids
have identical properties (polymer blends of similar de-
grees of polymerizations have very similar viscosities and
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densities [17–19]). For a system with no externally im-
posed length or time scales the Navier-Stokes equations
can be nondimensionalized such that all physical parame-
ters drop out. Domain length, L, and time, T , are scaled
by the values

L0 � rn2�s , (4)

T0 � r2n3�s2. (5)

For 3D binary fluids a transition from viscous to inertial
hydrodynamic growth has been predicted by scaling analy-
sis [6,7,20]. The predicted growth rates are

l � t for l ø 1 , (6)

l � t2�3 for l1�2 ¿ 1 , (7)

where l � L�L0 and t � �T 2 Ti��T0. Ti is a nonuni-
versal offset time which is needed for comparing different
runs since L is nonzero at T � 0. Although the crossover
length is lc � 1, viscous effects decrease more slowly in
the inertial regime than vice versa so that lc can appear to
be much larger. This effect can be seen in the crossover
behavior reported by Kendon et al. [10] in 3D. In 2D it
has been argued [7] that Eq. (7) should govern the entire
coarsening process. Recently Wagner and Yeomans [9]
have found a breakdown of scaling in 2D binary fluids due
to creation of a hierarchy of small circular domains.

We briefly consider two scenarios for ternary systems
with nonsymmetric volume fractions: (1) one majority
phase and two dispersed minority phases, and (2) two
majority phases and one minority phase, which could be
continuous (if it wets the interface between the continuous
majority phases) or dispersed. Case 1, where two of the
phases exist only as isolated droplets, cannot be affected
by hydrodynamic flow. The system may coarsen by a
Lifschitz-Slyozov mechanism or by droplet collisions.
This is analogous to the binary dispersed case, but colli-
sions between different phase droplets must also be con-
sidered. If the continuous phase wets the droplet-droplet
interface, then the droplet phases each coarsen separately,
perhaps more slowly than in the binary case because
movement is hampered by droplets of the other phase.
If an equilibrium contact angle exists between the three
phases, then collisions will create pairs of different phase
droplets. This could lead to chains of alternating phase
droplets like those seen in the solutions to the NLSD
equations in the later stages [2]. If one droplet phase wets
the interface between the other phases, then collisions
could result in coated droplets.

For case 2 we label the minority phase C and the ma-
jority phases A and B. If C wets the A-B interface two
situations may occur. If sAC � sBC � 0, then C acts
similarly to a surfactant which eliminates surface tension
between A and B [11]. Once C spreads, via hydrodynam-
ics, across the A-B interface, the domains become frozen
and cannot grow. In contrast, previous work [11] has
modeled the diffusion of surfactant to the interface via a
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FIG. 1. Evolution of domains for ternary system with l � 1,
n � 0.1, sAC � 5, grid size � 2562.

concentration field. If sAC . 0 or sBC . 0, then hydro-
dynamic growth occurs with C lying between the A and B
domains. Because contact lines are not maintained, each
phase is simply driven to minimize surface area.

We consider systems with majority phases A and B of
equal volume fraction (41%) and minority phase C. The
A-C and B-C surface tensions are equal, so that sAC �
sBC � lsAB. We examine domain growth for a system in
which the C phase wets the A-B interface (l � 1�2) and
for a system with a nonwetting minority phase (l � 1).
For initial conditions in binary systems we use randomly
generated patterns which are similar to the patterns seen by
other groups [9,12] at the onset of hydrodynamic coars-
ening. For ternary systems we use similar initial condi-
tions but insert a layer of minority phase at the interface
between the two majority phases based on the structure
seen in numerical [2,4] and experimental [1] studies of
ternary systems. We use periodic boundary conditions in
both directions.

A run for l . 1�2 is shown in Fig. 1. We find that
breakup of the minority phase occurs during the hydrody-
namic growth process. In the resulting morphologies the
A and B phases are continuous or semicontinuous while
C is dispersed. Once breakup occurs, the minority do-
mains grow through the slower process of random colli-
sions. Thus one would expect the ratio lC�lA, where li

is the dimensionless domain length of phase i (lA � lB

by symmetry), to decrease in time. This is similar to the
breakdown in scaling found by Wagner and Yeomans [9]
in binary systems as a nested hierarchy of circular domains
forms. However, in the ternary case the C phase droplets
are restricted to lie on the A-B interface which decreases
with time according to the hydrodynamic growth rate.
This increases the frequency of collisions and may lead
to an enhanced growth rate for lC . Thus, the growth of a
dispersed phase is enhanced by hydrodynamic flow. The
FIG. 2. Evolution of domains for ternary system with l �
1�2, n � 0.1, sAC � 5, grid size � 5122.

situation is quite different if, for example, sAC ø sBC

so that the C phase droplets leave the interface to enter
the A phase. Then the area (volume in 3D) in which the
droplets lie stays constant in time.

We compare growth rates for l � 1�2 (shown in
Fig. 2) with a binary system. All runs are on a 5122 grid.
For the ternary system sAC is used in L0 and T0. The
length, L, is measured by the inverse first moment of
the circularly averaged structure factor. We compare the
dimensionless length scales lA and lC , corresponding to
the majority and minority phases, respectively, to that of
a binary system, lbin. Our results do not show a universal
scaling law. In two of the ternary runs a sharp decrease in
the growth rate appears (the third run was not long enough
to observe this feature). A less abrupt decrease occurs
for the binary run at largest l. This behavior occurs at
L , 0.2 (where box length is 1) so it is unlikely that finite
size effects play a role in slowing down the dynamics. The
slowing down due to turbulence, as predicted by Grant
and Elder [21], is not applicable here since 2D fluids can-
not exhibit turbulence [22]. It appears that the coarsening
mechanism leads to structures that are unable to continue
growing at a constant rate.

TABLE I. Fitting Parameters (s � 5 in all runs).

n Ti z a

Binary:
0.5 0.028 0.598 0.522
0.2 0.013 0.558 1.170
0.1 0.0089 0.547 1.925

Ternary:
0.5 0.017 0.582 0.739
0.2 0.0084 0.566 1.498
0.1 0.0062 0.563 2.238
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FIG. 3. Reduced data for domain growth. Results are for bi-
nary system (bold lines), ternary majority phase (dashed lines),
and ternary minority phase (dash-dotted lines).

We determine growth rates for each data set, excluding
the portions where the sharp decrease occurred, by fitting
them to the form L � A�T 2 Ti�z . This corresponds to
a dimensionless growth law l � atz , where a � ATz

0 �L0.
The values of n, s, Ti , z, and a for binary and ternary runs
are listed in Table I. The results are plotted in Fig. 3. In
all cases the growth exponent is in the range 0.55 & z &

0.6. Binary and ternary results for the same parameters
and similar initial conditions satisfy LA�T� � Lbin�1.6T �.
Motion is driven by surface tension of both the A-C and
B-C interfaces. Thus, in the early stages, the ternary sys-
tem behaves similar to a binary system with higher surface
tension. However, disconnected domains are more likely
to form in ternary systems. The reason is that the C phase
can form a node separating two A domains and two B do-
mains. This mechanism may disrupt self-similar growth
and lead to a slowing down of the growth rate.

In conclusion, we have modeled the multiphase Navier-
Stokes equations directly by a level set method and devel-
oped a projection method to handle any number of phases
accurately. We find, for the binary case, a slower growth
rate than previously reported. In the ternary case where
a minority phase wets the A-B interface a similar growth
rate is seen in the early stages with a sharp decrease oc-
curring after a certain point. We attribute this decrease to
the formation of disconnected domains.
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