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Modulated Periodic Stokes Waves in Deep Water
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Modulated deep-water 1D Stokes waves are considered experimentally and theoretically. Wave trains
are modulated in a controlled fashion and their evolution is recorded. Data from repeated laboratory
experiments are reproducible near the wave maker, but diverge away from the wave maker. Numerical
integration of a perturbed nonlinear Schrödinger equation and an associated linear spectral problem
indicate that under suitable conditions modulated periodic Stokes waves evolve chaotically. Sensitive
spectral evolution in the neighborhood of homoclinic manifolds of the unperturbed nonlinear Schrödinger
equation is found.

PACS numbers: 47.35.+ i, 05.45.Yv, 47.11.+ j, 47.20.Ky
In 1847 Stokes obtained approximate nonlinear periodic
solutions of the water wave equations [1]. In 1926 Levi-
Civita proved that the series obtained by Stokes’ method
coverged [2]. Subsequently, Benjamin and Feir showed
that the Stokes wave was unstable in deep water [3]. The
result can be stated as follows: if the Stokes wave is slowly
modulated in sufficiently deep water, the wave is, in fact,
unstable. The modulation is described, to leading order,
by the nonlinear Schrödinger equation (NLS).

The NLS is a completely integrable Hamiltonian system
and possesses a large class of quasiperiodic solutions [4].
On the basis of NLS theory, one generically expects to have
near recurrence of initial states [5]. However, water wave
dynamics are described by NLS only to leading order in
an asymptotic expansion (based on small amplitudes and
slowly modulated wave trains). We find that perturbations
to NLS in the water waves context can cause serious non-
linear instabilities and chaos to develop.

Earlier work on computational chaos in the NLS equa-
tion demonstrated that small perturbations to the NLS,
even roundoff errors, can generate chaotic solutions for
initial data in sensitive regions, i.e., near homoclinic mani-
folds [6]. With symmetric data, u�2x, t� � u�x, t�, the
mechanism for chaotic behavior involves random cross-
ings of the critical level sets of the constants of motion
or “homoclinic crossings” [6,7]. With nonsymmetric data,
solutions of perturbed NLS do not generically exhibit ho-
moclinic crossings; rather transition states occur nearby
the homoclinic manifolds. The solutions are characterized
by random “homoclinic transitions” between left and right
going waves [8]. The homoclinic transitions lead to tem-
porally irregular, chaoticlike transitions in the waveform
between six different physical states.

In the present study we examine whether chaotic evolu-
tions can be observed in the water wave approximation to
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NLS [see Eq. (3)]. Our main findings are (i) consistent evi-
dence in the laboratory and numerical experiments of non-
repeatability and chaos; (ii) a nonlinear spectral analysis of
the data shows that the spectrum evolves into sensitive ho-
moclinic regimes where homoclinic transitions occur. The
phenomenon of nonreproducibility of water wave experi-
ments bears strong similarities to discrete problems where
computational chaos arises despite the fact that the pertur-
bations to the NLS equation are entirely different.

Laboratory experiments.—The experiments were con-
ducted in a wave tank 14.3 m in length by 25.4 cm in width
and 20 cm in depth. At this depth it is sufficient to use the
deep water limit. A computer-controlled wave maker at
one end of the tank generates waves with programmed po-
sition and velocity corresponding to the surface displace-
ment and its derivative of either a soliton or a modulated
periodic wave train. Five gauges, which average over the
width of the tank, measured the surface displacement of
the water. Gauge 0 is fixed at 40 cm downstream from
the wave maker and its data are analyzed to ensure that
the initial surface displacement near the wave maker is re-
producible. Gauges 1–4 were mounted 40 cm apart on
a movable carriage that spans the length of the tank. Two
types of time series are obtained from these gauges: a fixed
frame series obtained as the wave propagates past the fixed
gauges and a moving frame series obtained by setting the
carriage in motion (at the linear group speed) after tran-
sient effects die out.

In the temporal measurements we compare time series
obtained from different experiments with identical initial
conditions. These measurements are graphed against each
other to produce a “phase plane” diagnostic for repro-
ducibility. If the results of the two experiments are iden-
tical the graph will be the 45± line. In particular, the time
series from gauge 0 near the wave maker produces a 45±
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line with a very slight width, indicating a (1–2)% noise
level. This indicates what should be expected from time
series showing the wave field evolution.

Envelope solitons.—The control experiment is
performed with the soliton solution of NLS since theo-
retically it should evolve reproducibly (see below). The
wave maker was programmed to oscillate as hs�t� �
a sin�v0t�sech� av0t

p
2

�, where v0 � 20.94 rad�sec, a �
0.2 cm, k0 � 0.44 rad�cm, v0�k0� � 24.4 cm�sec (group
velocity), g � 980 cm�sec2, and T � 71.9 dyn�cm
(surface tension).

To determine if the soliton experiment is reproducible
the experiment was run every 15 min over a 21

2 h period.
Time series are obtained at gauge 4 when the carriage was
800 cm downstream of the wave maker. Figure 1a graphs
the water surface displacements measured in the first and
last experiments against each other. There was a slight
phase shift between the two data sets. Shifting each data
point in one of the data sets the same amount (0.009 21 sec)
produces the nearly perfect 45± line (Fig. 1a). There is
also some amplitude decay due to damping. This in-
dicates that we obtain a reproducible experiment when
the initial conditions are solitons and supports the no-
tion that, for envelope solitons for the time scales un-
der consideration, the unperturbed NLS equation [(3) for
e � 0] yields a satisfactory description of the long time
dynamics.

Modulated periodic wave trains.—For modulated wave
trains the position of the wave maker is programmed to be
hp�t� � a sin�v0t� �1 1 dE sinvpt�, where a � 0.5 cm,
vp � 1.047 rad�sec, dE � 0.1, the values v0, g, k0, T are
the same as in the soliton case, and the corresponding

FIG. 1. Phase plane plots for (a) experimental soliton data,
(b) experimental modulated wave train data, (c) numerical soli-
ton data, and (d) numerical modulated wave train data.
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unperturbed periodic wavelength of the modulation is L �
147 cm. For this initial data, phase plane plots show that
the wave is reproducible near the wave maker. However,
as the wave travels down the tank we obtain Lissajous-type
figures (see, e.g., Fig. 1b) indicating that a phase shift
develops between the waves of the two experiments which
is a function of time and cannot be removed. Unlike the
soliton, the two time series start to diverge, indicating the
experiment is irreproducible.

Spatial data associated with modulated periodic wave
trains were also obtained yielding a different perspective
of the evolution. The spatial envelope is reconstructed by
concatenating 40 sets of data for each of the four gauges.
In the 40 experiments the initial location of the carriage
differs by 1 cm successively for each experiment. At
21.3 sec after the wave maker was started, the carriage
begins traversing the tank at the group velocity of the un-
derlying wave train. The result is 160 time series of the
water surface spaced 1 cm apart which are used to recon-
struct the spatial profile of the water surface, 160 cm long.
Our ability to measure a spatial envelope by conducting 40
experiments requires the experiments to be reproducible.

In tracking the spatial envelope of the modulated wave
train, data taken near the wave maker are used to pro-
vide a benchmark for the level of noise. In reconstructing
the envelope by concatenating the data sets, the “blips” in
the data are miniscule at gauge 0 near the wave maker.
At t � 15 sec, the waveform is somewhat close to the
wave maker and the blips in the data are not significant
(Fig. 2a). Farther down the tank additional crests start to
form. The blips become significant and no longer represent
a simple nonsmoothness in the wave profile. By 40 sec, the
periodicity of the underlying wave train is lost (Fig. 2b).
The degeneration of the spatial coherence of the wave field
indicates that the experiments are not reproducible. This
experimental irreproducibility and the theory presented be-
low are evidence that modulated Stokes wave trains evolve
chaotically for certain parameter regimes.

Analytical background.—The equations governing the
surface waves are given by =2f � 0, for z # h, fz ! 0
as z ! 2`, where f�x, z, t�, h�x, t� are the velocity
potential and free surface displacement, respectively,
and, by the boundary conditions on the free surface
z � h�x, t�,

ht 1 hxfx � fz; ft 1 gh 1
1
2

�=f�2 � 0 .

(1)

In the small amplitude approximation, the velocity po-
tential is expanded about z � 0. For slowly modulated
waves one assumes the ansatz

f � e�Aeiq1jkjz 1 �� 1 e2�f̄ 1 A2e2�iq1jkjz� 1 �� . . . ,

h � e�Beiq 1 �� 1 e2�h̄ 1 B2e2iq 1 �� 1 . . . , (2)

where u � kx 2 vt, * denotes complex conjugate, and
the deep water dispersion relation is used: v2 � gjkj with
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k0 � 0.44 rad�cm (neither damping or surface tension
is taken into account in the theory). The variables
A, f̄,A2 are functions of X � ex, Z � ez, T � et,
and B, h̄, B2 are functions of X and T only. e is di-
mensionless and is a measure of small amplitude and
balances slow modulation; e � ka, where a is the size
of the initial surface displacement. Substituting the
above ansatz into the expanded form of the free surface
Eq. (1) leads to the following perturbed NLS equation on
z � 0 [9]:
2iv
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Note that f̄ satisfies =2f̄ � 0, with the boundary
conditions f̄Z � 2vk

g �jAj2�X on z � 0 and f̄ ! 0
as z ! 2`. The free surface amplitude is obtained
from h �

ev

g ��iA 1
e

2k Ax�eiu 2
k2e

v A2e2iu� 1 ���. We
introduce the following dimensionless and translating
variables: T 0 � vT , X 0 � kX, Z0 � kZ, h0 � kh,

f̄0 �
2k2

v f̄, u �
2
p

2k2

v A, t � 2e
T 0

8 , x � X 0 2
1
2T 0.

Solving Laplaces equation on 2` # Z # 0 by Fourier
methods for f̄ in terms of A yields the following perturbed
nonlocal NLS equation (HONLS):

iut 1 uxx 1 2juj2u 1 ´

µ
i
2

uxxx 2 6ijuj2ux 1 iu2u�
x

1 2u�H�juj2�x �
∂

� 0 , (3)

FIG. 2. Spatial envelope of the modulated wave train at (a)
t � 15 sec and (b) t � 40 sec.
where H� f� represents the Hilbert transform of the func-
tion f. The Fourier transform of the Hilbert transform

yields dH� f� � i sgn�k� df�k�. These Fourier relations are
readily implemented numerically. Note that Eq. (3) de-
stroys even symmetry.

Solutions of the NLS equation [(3) for e � 0] with peri-
odic boundary conditions can be described in terms of the
Floquet spectrum of the following linear operator [4]:

L �u; l� � i

√
1 0
0 21

!
d
dx

2

√
0 u

2u� 0

!
2 lI . (4)

Using the fundamental solution matrix M, defined by
the conditions L �u; l�M � 0 and M�x, x; u, l� � I ,
we introduce the Floquet discriminant D�l� �
Tr�M�x 1 L, x; u, l��. The spectrum of L is given
by the following condition on the discriminant:
s�L � � �l [ � jD�l� [ 4, 22 # D�l� # 2�. The
elements of the periodic spectrum that we monitor in the
experiments are (a) simple points ls, specified by the
condition D�l�jl�ls � 62, D0jl�ls fi 0, and (b) double
points ld , which satisfy the conditions D�l�jl�ld � 62,
D0jl�ld � 0, D00jl�ld fi 0.

The spectrum is invariant under the NLS flow. Each pe-
riodic eigenvalue corresponds to a nonlinear mode whose
structure and dynamical stability are determined by the
location and order of the periodic eigenvalue. Complex
double points are associated with linearized instabilities of
the NLS equation [6,7,8,10]. The complex double points
label the orbits homoclinic to unstable solutions and cor-
respond to “sensitive” regions of phase space.

Consider the class of solutions related to perturbations
of the periodic Stokes wave (for the NLS equation it is
given by u0�t� � ae2ia2t where, for convenience, a is
assumed to be real). After dimensionalizing and
transforming to the surface displacement h, the ex-
ponent corresponds to the nonlinear frequency shift
found by Stokes. Stability of the Stokes wave can
be found by considering perturbations of the form
u�x, t� � u0�1 1 e�x, t�� and linearizing for small e. As-
suming e�x, t� � en�0�eimnx1isnt 1 e2n�0�eim2nx2is2nt

and mn � 2pn�L, the growth rate sn is given by
s2

n � m2
n�m2

n 2 4a2�. Thus the solution is unstable pro-
vided that 0 , �pn�L�2 , jaj2. This stability criterion is
applicable to the modulated periodic wave train produced
via hp�t� described in the laboratory experiments.

Numerical experiments.—We numerically study Eq. (3)
and consider the following two classes of initial data:
889



VOLUME 84, NUMBER 5 P H Y S I C A L R E V I E W L E T T E R S 31 JANUARY 2000
(i) experimental data (“E”) obtained near the wave maker
(Fig. 2a); and (ii) theoretical data (“T”) u�x, 0� � a�1 1

dT cosmnx�. Reproducibility is studied by graphing h,
the surface displacement evolution of u�x, 0� versus that
of u0�x, 0� � u�x, 0� �1 1 dr�x��, where d is on the level
of experimental noise (1%–2%) [r�x� is a random field].
All parameters in the numerical experiments have been
carefully matched with the nondimensionalized parame-
ters used in the laboratory experiments consistent with the
assumption of deep water and omitting surface tension.
We use a 4th order pseudospectral code for integrating
HONLS with N � 512 Fourier modes in space and a 4th
order adaptive Runge-Kutta scheme in time.

In [11] we have shown that for data T there are
2n 1 1 simple imaginary points in the spectrum: l0
and �ln1, ln2�, n � 1, 2, . . . , M. When dT is asymptot-
ically small, the distance of the simple points ln1,ln2

of the spectrum of L from a double point is O�dn
T �,

n � 1, 2, . . . , M and can be made arbitrarily small by
taking M large enough. Since the effects of noise in the
experiments are larger than the distance from the double
points (for M � 3), perturbations of the eigenvalues due
to noise are also important.

The results of the numerical study of (3) are consis-
tent with the evidence of chaotic evolutions provided by
the laboratory experiments. Using initial data E, for short
times the experiment is reproducible and the phase plane
plot stays close to the 45± line. As the wave field evolves,
the experiment is rendered irreproducible. A nonremov-
able phase shift develops between the experiments that
changes with time resulting in a phase plane plot that is
strikingly similar to that of the laboratory data (Fig. 1d).

To investigate the chaotic evolution we use the associ-
ated nonlinear spectral theory of the NLS equation. The
data provided by the physical and numerical experiments
are projected onto the nonlinear spectrum of the NLS
and we follow its evolution in time. The spectral results
are striking. For data E there are initially seven simple
nonreal eigenvalues which, as described above, are cen-
tered around three double points that correspond to three
unstable modes. We found frequent and (apparently) per-
sistent homoclinic transitions in all the excited modes, in-
dicating a change in the nonlinear mode content and the
characteristics of the modes. The wave train thus changes
its features irregularly in space and time.

Although there is no mathematical proof of chaos,
nevertheless on the physical time scales examined, the net
result is serious temporal irregularities and apparently
chaotic dynamics. We conclude two things: (i) the
HONLS equation causes significant temporal movement
of the spectrum and numerous homoclinic transitions.
In this parameter regime, the NLS is not an adequate
approximation to the water wave problem. (ii) Remark-
ably, the chaotic dynamics observed for HONLS bears
many similarities to the chaotic dynamics observed in
other perturbed NLS equations, most notably the discrete
890
systems with noneven initial data studied in Ref. [8], only
here the eigenvalues evolve significantly away from the
imaginary axis. Further, we do not observe homoclinic
crossings as in [6,7].

The other periodic wave trains we studied using HONLS
corresponded to model data T . We considered cases for
M � 1, 3, 5 nearby unstable modes, all with dT � 0.1.
For M � 1 we found that the phase plane diagnostic
produces the 45± line. The end points of the spectrum
remained well separated by large “gaps” during the ex-
periment and did not evolve into sensitive regions; regular
nonchaotic dynamics ensued. For this case the NLS
equation gives an adequate description of the dynamics.

The situation for M � 3 was found to be qualitatively
similar to the experimental data (as expected). For the
case M � 5 we found that the phase plane plot diverges
from the 45± line even more strongly than for M � 3.
The spectrum evolved significantly and we found more
numerous homoclinic transitions than with M � 3. The
cases M � 3, 5 yield strong temporal irregularities and,
for the time scales under consideration, chaotic dynamics.

Finally we mention a “theoretical” soliton case using
HONLS for initial data u�x, 0� � a sech�ax�. The phase
plane plot remains close to the 45± line with little spread
(Fig. 1c), as was observed in the laboratory. The spectral
plots indicate widely separated simple eigenvalues which
do not evolve near sensitive regions. The soliton case was
found to be reproducible and reflects a stable nonchaotic
evolution which NLS adequately describes.
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