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First Experimental Evidence for Chaos-Assisted Tunneling in a Microwave Annular Billiard

C. Dembowski,1 H.-D. Gräf,1 A. Heine,1 R. Hofferbert,1 H. Rehfeld,1 and A. Richter1,2

1Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany
2Wissenschaftskolleg zu Berlin, D-14193 Berlin, Germany

(Received 30 August 1999)

We report on first experimental signatures for chaos-assisted tunneling in a two-dimensional annu-
lar billiard. Measurements of microwave spectra from a superconducting cavity with high frequency
resolution are combined with electromagnetic field distributions experimentally determined from a nor-
mal conducting twin cavity with high spatial resolution to resolve eigenmodes with properly identified
quantum numbers. Distributions of quasidoublet splittings serve as basic observables for the tunneling
between whispering gallery-type modes localized to congruent, but distinct tori which are coupled weakly
to irregular eigenstates associated with the chaotic region in phase space.

PACS numbers: 05.45.Mt, 41.20.Jb, 74.50.+r, 84.40.Fe
For two decades a new kind of tunneling mechanism
has produced great interest, since it demonstrates how the
dynamical features of a classical Hamiltonian system ef-
fect the behavior of its quantum counterpart [1–3]. This
so-called “dynamical tunneling” occurs whenever a dis-
crete symmetry of the system leads to distinct but symme-
try related parts of the underlying classical phase space.
In contrast to the well-known barrier tunneling, dynamical
tunneling depends only upon the probability for a quan-
tum particle, although classically forbidden, to leave cer-
tain regions of phase space and travel into others. This
basically involves the coupling strength between distinct
phase space regions. In the special case of two symme-
try related regular regions separated by a chaotic area in a
mixed phase space, semiclassical quantization yields pairs
of quantum states which are localized to the corresponding
sets of congruent, but distinct tori. These so-called quasi-
doublets show a very sensitive splitting behavior which
depends upon the coupling to irregular eigenstates asso-
ciated with the intermediate chaotic sea. This nondirect,
enhanced coupling of regular eigenmodes via chaotic ones
is what defines chaos-assisted tunneling [4–6] in its origi-
nal sense [7].

The aim here is to demonstrate for the first time that
chaos-assisted tunneling can be observed experimentally,
even for a case where the size of the splitting is sev-
eral orders of magnitude below the typical mean level
spacing of the system. For this purpose we performed-
measurements on superconducting as well as normal con-
ducting microwave cavities constituting a special family
of Bohigas’ annular billiard [8–10]. This system has been
proven in very extensive computer simulations, especially
in Refs. [8,9], to be a paradigm for chaos-assisted tunnel-
ing and provides access for experimental investigation.

The two-dimensional geometry of the annular billiard
is defined by two circles of radius r , respectively, R, the
latter being set to unity, and the center displacement or ec-
centricity d; see the left side of Fig. 1. In the following,
only the special one-parameter family r 1 d � 0.75 will
be considered, since it provides all the features which are
0031-9007�00�84(5)�867(4)$15.00 ©
relevant for chaos-assisted tunneling: From the classical
point of view the system shows a transition from integrable
(d � 0) to mixed behavior (d . 0), thus developing a
growing chaoticity with increasing d. Furthermore, the
discrete reflection symmetry leads to congruent but classi-
cally distinct regions in phase space.

To demonstrate this, Fig. 1 (right side) shows a typi-
cal Poincaré surface of section for the configuration (d �
0.20�r � 0.55). Here the area preserving Birkhoff coordi-
nates L (point of impact on the outer circle) and S � sina

(angular momentum of the billiard particle) have been
used. Besides a large chaotic sea with chains of stable
islands in the center, both of which are influenced by a
change of the eccentricity d, two symmetry related but
distinct neutrally stable coastal regions for jSj . 0.75 can
be observed. Per construction of the family r 1 d � 0.75
these regular regions are invariant under variations of d,
since the corresponding trajectories do not hit the inner
circle. As a consequence S is conserved, indicated by hori-
zontal lines in the surface of section. Those lines corre-
spond to two so-called whispering gallery trajectories [8].
From this, the only difference between the two distinct
regular regions is the sign of S, i.e., the sense of motion
for the propagating particle.

The fundamental question now accounts for the quan-
tum counterpart of the classically forbidden transport be-
tween the distinct coastal regions: dynamical tunneling.
Since the coupling between both regions crucially depends
upon the topology and the size of the chaotic sea, the
system is, in particular, adequate to study chaos-assisted
tunneling. But what is the basic observable for the tunnel-
ing strength in the corresponding quantum system? To
answer this it is very instructive to start with the inte-
grable case (d � 0). Solving the Schrödinger equation
with Dirichlet boundary conditions leads to eigenvalues
kn,m and eigenstates Cn,m, with the angular momentum
quantum number n and the radial quantum number m. Be-
cause of Einstein-Brillouin-Keller quantization [3,8] the
property S � n�kn,m is the quantum angular momentum
which has to be compared with the classical S � sina in
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FIG. 1. The annular billiard for d � 0.20 and r � 0.55 (left
side) together with the corresponding Poincaré surface of section
(right side). Besides a large chaotic sea with stable islands in
the center the phase space clearly displays two symmetry related
but dynamically distinct regular coastal regions for jSj . 0.75.
Two examples of horizontal lines corresponding to whispering
gallery trajectories (clockwise as well as counterclockwise) are
shown.

order to find the location of a certain quantum state in
the phase space. While in the classical system the reflec-
tion symmetry of the billiard leads to two distinct but re-
lated regular regions with opposed sense of motion for the
propagating particle (i.e., the whispering gallery trajecto-
ries clockwise and counterclockwise); the corresponding
quantum eigenstates are organized in doublets for d � 0
with two parities, even and odd, respectively. However,
continuously increasing the eccentricity d systematically
destroys this doublet structure, yielding singulets for states
with S � n�k right within the chaotic sea (S , 0.75) and
quasidoublets on the remaining regular coast (S . 0.75).
As in the case of the well-known double-well potential
[1,2,5] the very small splitting of those quasidoublets is
directly determined by the classically forbidden tunneling,
thus presenting a very effective observable for the hardly
accessible tunneling strength. The location of a certain
quasidoublet on the regular coast (defined by S � n�k),
as well as the transport features of the chaotic sea (defined
by d), has a direct impact on the splitting and is investi-
gated systematically.

As in earlier studies (for an overview, see [11]), we
simulated the quantum billiard by means of a two-
dimensional electromagnetic microwave resonator of the
same shape [left-hand side (lhs) of Fig. 1]. The mea-
surements were divided into two parts: Taking in total
three different configurations of the family r 1 d � 0.75
(i.e., d � 0.10, 0.15, and 0.20), we performed on one
hand experiments with a superconducting niobium reso-
nator (scaled to R �

1
8 m) at 4.2 K in order to measure

quasidoublet splittings within the frequency range up
to f � 20 GHz. The very high quality factor of up to
Q � 106 allows a resolution of G�f � 1026, where G is
equal to the full width at half maximum of a resonance.
For demonstration, Fig. 2 shows transmission spectra of
the resonator in the vicinity of 9 GHz. Besides several
singulets exactly one quasidoublet can be observed which
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shows a small but systematic displacement with d. In
all cases the very small splitting of the quasidoublet is
clearly detectable. This is due only to the high resolution
of the superconducting resonator. It is important to
note that the position of the exciting antennas has to be
chosen carefully in order to minimize the perturbation
on the whispering gallery modes in the coastal region
(Fig. 1) and thus not to influence the size of their physical
quasidoublet splitting. Using antennas right within the
whispering gallery region of the billiard (sketch at the top
of Fig. 2) always produces “false” splittings even for the
concentric system (d � 0) with twofold degenerate states.
We therefore used antennas in the shadow region of the
inner circle also preserving the symmetry of the whole
geometry; cf. Fig. 2.

For a proper identification of the quantum numbers
�n jm� of the modes associated with the quasidoublets
on the other hand we used a normal conducting copper
twin of the niobium billiard cavity. There we measured
the corresponding wave function, respectively, electromag-
netic field distributions, from which the relevant quantum
numbers n and m could be deduced, even if they are far
from being “good quantum numbers” in the given eccen-
tric systems which are nonintegrable. This second part of
the experiment was based on a field perturbation method
originally introduced in accelerator physics and used suc-
cessfully in billiard research before [12,13]. According to
Slater’s theorem [14] a small metallic body inside the cav-
ity locally interacts with the electromagnetic field in such
a way that a frequency shift of the excited mode results
from the compensation of the nonequilibrium between the
totally stored electric and magnetic field energy. This shift

≠f � f0 2 f � f0�a �E0
2

2 b �H0
2
� (1)

FIG. 2. Transmission spectra around 9 GHz with varying d.
Among several singulets exactly one quasidoublet, slightly mov-
ing with d, can be observed. In the zooming circles the abscissa
is stretched by a factor of 50 in order to visualize the quasidou-
blet splitting. Spectra at d , 0.10 could not be realized with
the present setup of antenna locations.
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with respect to the unperturbed mode (index 0) directly de-
pends upon the superposition of the squared electric and
magnetic fields, �E0 and �H0, respectively. Since the quan-
tum wave function is related to the electric field only, the
magnetic component has to be removed by a proper choice
of the geometry constants a and b in Eq. (1) by choos-
ing needlelike bodies (1.84 mm in length and 1.00 mm
in diameter). Moving the body across the whole two-
dimensional surface of the billiard with a spatial resolution
of about one-tenth of a wavelength by means of a guiding
magnet and detecting ≠f at each position finally provides
the complete field distribution. Examples of those for the
configuration d � 0.20 in the vicinity of 9 GHz are plot-
ted in the upper part of Fig. 3. Of the three distributions
only the middle one with the quantum numbers n � 18
(36 field maxima in the polar direction) and m � 1 (one
field maximum in the radial direction) is characteristic for
the modes which are localized in the whispering gallery
region (Fig. 2). Contrary to this the distributions on the
lhs and on the right-hand side (rhs) show a totally differ-
ent pattern. The parity of the distributions is determined
as follows: If there is maximum field strength on the line
which defines the reflection symmetry of the billiard, posi-
tive parity can be assigned to the mode, likewise negative
parity for zero field strength on this line.

Underneath the squared electric field strength distribu-
tions in Fig. 3, the corresponding transmission spectrum
taken at 300 K with the normal conducting copper cavity
is shown. The three broad resonances associated with the
field distributions are much better resolved in the measure-
ment at 4.2 K of the superconducting niobium twin cav-
ity. The small displacement in frequency of the resonances
in the two measurements is due to mechanical imperfec-
tions of each individual cavity and positioning errors of the
respective inner circles within the resonators. Mechani-
cal uncertainties of order 6100 mm relative to the radius
of the outer circle R � 125 mm are sufficient to account
for the observed displacements. The spectrum at 4.2 K
in Fig. 3 shows that the resonance magnified in the in-
set is one of the expected quasidoublets characteristic for
chaos-assisted tunneling. Naturally, this quasidoublet is
not resolved in the spectrum taken at room temperature,
and the field distribution in the upper part of Fig. 3 proves
that of the two modes corresponding to the doublet in the
particular case considered the one with negative parity is
excited stronger than the other.

Calculating the quantum angular momentum S � n�k
(with k � 2pRf�c0, where f denotes the centroid fre-
quency of the quasidoublet and c0 denotes the speed of
light) finally yields the position of the whispering gallery-
type mode on the corresponding classical surface of sec-
tion; see the rhs of Fig. 1. In the case of mode �18 j 1� one
obtains S � 0.77 characteristic for a mode in the so-called
“beach region” [9] defined by the borderline S � 0.75 be-
tween the chaotic sea and the regular coast, respectively.

This comparison demonstrates that the measurements
combine the high spatial resolution of about l�10 for
FIG. 3. Matching of field strength plots taken at 300 K and
microwave spectrum taken at 4.2 K. The combined normal/
superconducting setups allow one to measure highly resolved
quasidoublets including quantum numbers �n jm� and parity.

the normal conducting billiard with the high frequency
resolution of about 1�Q for the superconducting one,
thus allowing a very effective classification of regular
quasidoublets as well as chaotic singulets in the range up
to approximately 14 GHz, where the splittings become
smaller than the resonance widths of the superconduct-
ing resonator. The difference in frequency between
the peaks of each quasidoublet was estimated through
a nonlinear fitting to “skew Lorentzians” [see Eq. (4)
in [15] ].

Now, we consider only the family with quantum
numbers �n j 1�, since it consists of some 30 undoubtedly
identified quasidoublets. To uncover effects due to
chaos-assisted tunneling, the splitting of a certain
quasidoublet has to be analyzed as a function of its
corresponding position in the classical phase space. As
mentioned above, this position might be expressed in
terms of S � n�k as the quantized analog of the classical
S � sina, directly representing the very location in the
underlying surface of section. The resulting curve, again
for the configuration d � 0.20, is shown in the lower part
of Fig. 4.

Here, the distribution of normalized splittings jDf�fj
shows a smooth transition from chaotic states defined by
large splittings right within the chaotic sea (S , 0.75) to
regular quasidoublets with very small splittings in the clas-
sical coastal region (S . 0.75). Also the measured field
distributions show an increasing regularity with growing
S, as can be seen from the examples in the upper part of
Fig. 4. Especially mode �29 j 1� is hardly distinguishable
from the corresponding concentric mode (jDf�fj � 0) al-
though the system is strongly eccentric.

Besides this global behavior a first strong signature of
chaos-assisted tunneling can be observed in the particular
shape of the splitting curve: In the direct vicinity of the
beach at S � 0.75 the quasidoublets show a locally en-
hanced splitting amplitude, thus indicating a very effective
coupling between the regular coast and the chaotic sea. As
described above, this corresponds to a locally enhanced
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FIG. 4. Distribution of normalized splittings with respect to
the position of a certain quasidoublet in classical phase space.
The error on the splitting is generally smaller than the size of
the squares except for the smallest splitting observed. Besides a
smooth transition from states with a large splitting right within
the chaotic sea (S , 0.75) towards states with a very small
splitting on the regular coast (S . 0.75) a local maximum occurs
in the direct vicinity of the beach, representing a very impressive
signature for chaos-assisted tunneling.

tunneling strength in the beach region as theoretically pre-
dicted in [9].

To evaluate the influence of the chaoticity of the system,
Fig. 5 shows a direct comparison of the splittings for all
eccentricities d in the vicinity of the beach at S � 0.75.
Note that the splittings for different d not only enhance
the visibility of the maximum, they furthermore reveal an
additional feature of chaos-assisted tunneling: While split-
tings on the rising left part of the maximum, i.e., within
the chaotic sea (S , 0.75), are distributed quite systemati-
cally (e.g., the data points of d � 0.20 always correspond
to the largest splittings) show the falling right part large
fluctuations for a given eccentricity d. This effect is also
theoretically predicted [5,8,9] and accounts for the high
rate of anticrossings with chaotic modes for high angular
momenta S. Thus on the rhs of S � 0.75 the tunneling
strength shows a very random dependence on the eccen-
tricity d leading to strong fluctuations in the distribution of
splittings. Finally, for even larger values of S the splitting
amplitudes are of the order of the inverse quality factor,
Df�f � 1�Q � 1026, defining the resolution limit of the
present setup.

In summary, we have presented first experimental signa-
tures for chaos-assisted tunneling in a billiard. As the basic
observable we have investigated the splittings of quasidou-
blets with respect to their position in the classical phase
space and their dependence on the eccentricity d. A local
maximum in the vicinity of the beach region with a sys-
tematically rising and randomly falling part has been found
which directly reflects the enhanced tunneling strength at
this critical location between the regular coast and the
870
FIG. 5. Distribution of normalized splittings in the beach re-
gion for different eccentricities d. The local maximum is rebuilt
by all measured quasidoublets forming a systematically rising
and a randomly falling part below and above S � 0.75.

chaotic sea. In this context, a combined experimental setup
using normal as well as superconducting billiards has of-
fered a very effective tool for measuring highly resolved
quasidoublets with properly identified quantum numbers.
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