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Variationally Optimized Numerical Orbitals for Molecular Calculations
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The problem of variational optimization of the atomic orbitals used in molecular calculations is inves-
tigated. It is shown that the variational principle leads to an equation similar to the radial Schrödinger
equation but containing an inhomogeneous term. As an example, the equations are solved for the mini-
mum basis set orbitals for the methane molecule. The results show a substantial improvement over those
of a previous calculation optimizing in a minimum basis of Slater orbitals.

PACS numbers: 31.15.Pf, 31.15.Ne
Practically all contemporary calculations of molecular
electronic properties are based on discrete basis approxi-
mations using Gaussian orbitals (GTOs) as proposed ori-
ginally by Boys [1]; such calculations have come to be
commonplace in modern chemistry using computer pack-
ages such as GAUSSIAN 94 [2]. GTOs are used, of course,
since they render the problem of computing multicenter
integrals, integrals of products of angular momentum or-
bitals centered at different points, almost trivial. On the
other hand, GTOs are not very well suited for an accurate
description of electronic properties in molecules since they
behave analytically at the nuclei, whereas the true elec-
tronic wave functions exhibit a cusp behavior. In addition,
at large distances, GTOs decrease more rapidly than the ex-
ponential decrease expected for bound state functions. In
momentum space, GTOs also decrease in Gaussian fashion
at large jkj whereas for an orbital of angular momentum l
they should decrease like jkj242l .

These problems with GTOs are overcome to some ex-
tent by using superpositions of several GTOs to mimic the
correct physical behavior and there is a very large amount
of literature concerned with the construction of these “con-
tracted” orbitals. However, the use of these superpositions
defeats, to some extent, the advantage obtained from the
simplicity of using these orbitals. At the same time, prob-
lems arise from the use of large numbers of orbitals. There-
fore it may be useful to construct orbitals that are more
physically realistic.

To a large extent, atomic calculations are based on
numerical orbitals, i.e., single-particle functions that are
defined on a numerical mesh. Such orbitals have the ad-
vantage of complete flexibility [3]. The use of such orbitals
is, of course, feasible because of the spherical symmetry
of the atomic problem, which is lost in the molecular situ-
ation. Atomic orbitals are usually computed variationally
using the Hartree-Fock or multiconfiguration Hartree-Fock
methods giving results of high accuracy. Since the ener-
gies in GTO calculations depend on the orbital parameters,
i.e., the z parameters, in a very complicated way, it is not
in general feasible to optimize these calculations on the
parameters, and it is usual practice to use sets of standard-
ized orbitals. A recent paper by Lee and Head-Gordon
0031-9007�00�84(5)�855(4)$15.00 ©
[4] reviews and discusses the possibility of making partial
optimizations.

In the past, I have proposed several methods for com-
puting the multicenter integrals required for molecular
calculations for arbitrary, numerical orbital basis functions
[5,6]. These methods employ an efficient method [7] for
computing spherical Hankel transforms required for the
transformation of angular momentum wave functions
from ordinary space to momentum space and vice versa.
Techniques have been described for computing overlap
integrals, nuclear attraction integrals, and two-electron
integrals, and the feasibility of applying these methods
has been demonstrated in a MO-LCAO calculation for
the methane molecule [8]. However, these methods are
of limited utility unless the numerical orbitals can be
constructed to be physically realistic.

In this Letter the problem of variational optimization
of the radial factors in the atomic orbitals that form the
basis of an MO-LCAO calculation is discussed. The
principal complication in going beyond the radial
Hartree-Fock equations for atoms is the nonorthogonality
of orbitals on different centers; the main result is to
provide a method for dealing with this problem. The
equations to be solved resemble, but are somewhat
different from, the radial Hartree-Fock equations. As an
example, the equations will be solved for the electronic
ground state of the methane molecule in the minimum
basis.

In an MO-LCAO calculation, a Slater determinant is
formed from molecular orbitals fi that are linear combi-
nations of atomic orbitals.

fi�r� �
X
k#i

dkixk�r� , (1)

where xk�r� is of the form flm�r 2 ak� where flm�r� �
xk�r�Ylkmk �r̂� and is centered at ak , usually one of the
nuclear coordinates. The fj�r� are constructed to be or-
thonormal using the Gram-Schmidt procedure. This is im-
plemented by forming the overlap matrix V with elements

vij �
Z

xi�r�xj�r� dr (2)
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and making the Cholesky factorization V � RTR, where
R is upper triangular. Then, if D � R21, DTVD � I and
the coefficients dki are the elements of D.

The Hamiltonian for the problem is

H � 2
1
2

X
i

=2
i 2

X
i,n

Zn

jri 2 Rnj
1

X
i,j

1
jri 2 rjj

,

(3)
856
where Zn and Rn are the charge and position of nucleus n.
Orthonormal Hartree-Fock orbitals ci are formed as linear
combinations of the fj:

ci�r� �
X
j

ujifj�r� �
X
kj

dkjujixk�r� �
X
k

ckixk�r� .

(4)

The total energy is then given, in terms of matrix elements
with respect to the xk , by
E �
X
kk0

wkk0�kjHspjk
0� 1

1
2
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1
2
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, (5)
where Hsp is the sum of the kinetic energy operator and
the nuclear attraction potentials. The wkk0 are elements of
the density matrix W:

wkk0 � 2
X0

ckick0i , (6)

where the prime on the sum indicates that it is on the occu-
pied single-particle states. (The simplest situation in which
there are an even number n of electrons, and the lowest n�2
states are doubly occupied, is being considered.) Minimiz-
ing E with respect to the coefficients cki leads to the matrix
Hartree-Fock equation

Ĥ0v i � liVv i , (7)

where Ĥ0 is the matrix with elements

ĥ0
kk0 � �kjHspjk

0� 1
X
ll0

wll0

∑
�kljyjk0l0� 2

1
2

�lkjyjk0l0�
∏

.

(8)
The generalized eigenvalue problem (7) can be replaced
by the usual equation

Ĥui � liui , (9)

where Ĥ � DTĤ0D, v i � Dui . This equation is solved
iteratively with Eq. (6) to obtain the self-consistent density
matrix wkk0 . The density matrix is then given by

W � 2D
X0

uiuiTDT � DPDT , (10)

where P � 2
P0 uiuiT .

The variational problem for the optimized orbitals is

dE
dxm�r�

� 0 . (11)

E depends on xm�r� directly through the Hamiltonian ma-
trix elements and indirectly through the elements of the
density matrix. The direct terms are
∑
dE

dxm�r�

∏
1

� 2
X
k0

wmk0Hspxk0�r� 1 2
X
k0

X
ll0

Ω∑
wmk0wll0 2

1
2
wlk0wml0

∏
yll0�r�

æ
xk0�r� , (12)
where

yll0�r� �
Z

jr 2 r0j21xl�r0�xl0�r0� dr0 (13)

is the potential produced by the product of the orbitals
xl�r� and xl0�r�.

The indirect terms are
∑

dE
dxm�r�

∏
2

�
X
kk0

ĥ0
kk0

dwkk0

dxm�r�
� Tr

∑
Ĥ0

dW
dxm�r�

∏
.

(14)

From W � DPDT ,

dW � dDPDT 1 DdPDT 1 DPdDT . (15)
Since DTVD � I,

dDTVD 1 DTdVD 1 DTVdD � 0 , (16)

dDTRT 1 RdD � 2DTdVD . (17)

The first term on the left hand side is lower triangular, and
the second term is upper triangular. The equation for dD
can be solved by writing

DTdVD � dX � dXU 1 dXL (18)

with dXL � dXT
U . It follows that

dDT � 2dXLD
T (19)

and similarly dD � 2DdXU.
It can be shown that the term DdPDT in Eq. (15) does

not contribute:
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Tr�Ĥ0DdPDT � � Tr�ĤdP� � 2
X

0

i

Tr�ĤuiduT
i 1 duiuT

i Ĥ� � 4
X

0

i

liTr�duiuT
i � � 4

X
0

i

li�ui , dui� � 0 . (20)
(Since ui is normalized, dui is orthogonal to ui .)
Therefore

dW � 2DdXUPD
T 2 DPdXLD

T . (21)

Now

�dV�dxm�r��ij �
X
n

�dimdjn 1 dindjm�xn�r� , (22)

�DdV�dxm�r�DT�ij �
X
n

�dimdjn 1 dindjm�xn�r� .

(23)

If Ymn denotes the upper triangular part of the matrix with
elements dmidnj 1 dnidmj ,

dW
dxm�r�

� 2
X
n

�DYmnPD
T 1 DPYT

mnD
T �xn�r� ,

(24)

Tr

∑
Ĥ0

dW
dxm�r�

∏
� 2

X
n

Tr�Ĥ�YmnP 1 PYT
mn��xn�r� .

(25)

The variational equation for the atomic orbitals is therefore
X
n

Ω
Hmn 2

1
2

Tr�Ĥ�YmnP 1 PYT
mn��

æ
xn�r� � 0 , (26)

where the operators Hmn are defined implicitly in Eq. (12).
The radial factor xm satisfies the projection of this equation
onto the appropriate angular momentum subspace centered
at am.

The resulting set of coupled equations can be solved
self-consistently by viewing the equation arising from the
variation of xm as an equation for xm with the other or-
bitals fixed. This assumes that xm remains normalized
between iterations. The term in Eq. (26) with m � n is
then separated to give a differential equation for xm; the
remaining terms then contribute an inhomogeneous term.
The resulting Schrödinger-like radial equation is

2
1
2r

d2

dr2 rxm�r� 1
lm�lm 1 1�

2r2 xm�r� 1

�Vd�r� 2 Em�xm�r� 1 Zm�r� � 0 , (27)

where Zm�r� arises from the inhomogeneous terms. The
constant Em, which arises from the term with m � n, plays
the role of a Lagrange multiplier and is chosen to maintain
the normalization. A very effective iterative scheme to
adjust Em that converges in two or three iterations has
been used. The equations are then solved iteratively to
obtain a self-consistent solution. In the calculations, all the
terms proportional to xm have been included in the form
Vd�r�xm�r� for the purpose of the self-consistent solution.

The equation for xm is generated by expanding all the
terms about the center am. An angular momentum wave
function flm�r 2 R� can be expanded as (regarding am as
the origin)

flm�r 2 R� �
X
LM

FLM�r ,R�YLM�r̂� . (28)

The functions FLM�r ,R� are computed numerically us-
ing a Fourier transform technique. The procedure involves
spherical Hankel transforms [8]. These numerical trans-
forms are carried out very efficiently by using a logarithmic
mesh for both the radial spatial and momentum meshes [7].
The expansion of the nuclear attraction potentials uses the
Laplace expansion. The product of two such expansions
of the form of Eq. (28) can be reexpressed in the same
form using the usual expansion for the product of spherical
harmonics.

To demonstrate the feasibility of the variational proce-
dure, I have made calculations for the methane molecule
in the minimum basis of 1s, 2s, 2px,y,z orbitals centered
on the C nucleus, and 1s orbitals centered on the protons.
Similar calculations have been made previously by Pitzer
[9] using Slater orbitals, varying the nonlinear parameter z

in the four different orbital forms; these provide a valuable
comparison.

The calculations require infinite summations as implied
in Eq. (28). These are truncated at various values. In the
nuclear attraction three-center integrals, which are singly
infinite, the summation is truncated at a value L

�N�
max, and

a Padé approximation method is used to accelerate the
convergence.

The two-electron integral sums are doubly infinite if all
four centers are different, and are singly infinite if both
factors in a product are on the same center. The expan-
sion of the product of two orbitals is truncated at a value
L

�1�
max if the sum is singly infinite, and at L

�2�
max if the sum is

doubly infinite. If the orbitals in a product are on different
centers, they are expanded about the midpoint of the two
centers in the total energy calculation and about the appro-
priate orbital center in the optimization calculation. Lmax
denotes the maximum used in the orbital expansions for
the two-electron integrals. (The total energy calculation
and the optimization are made independently.) The time
requirement is largely determined by the calculation of the
four-center, two-electron integrals with the orbitals on four
different centers as governed by the parameter L

�2�
max.

To obtain self-consistency, input and output values of
Vd�r� and Zm�r� are combined with weights of 0.4 and 0.6,
respectively, at each iteration. Since the energy does not
always decrease monotonically, the minimum over about
ten iterations is determined.

Table I gives results of the optimization calculation with
L

�N�
max � 12, Lmax � 14, L

�1�
max � 10, and L

�2�
max � 2, 4, 6.

The energy calculations are made with the same limits
and L

�2�
max � 6. The results are given for the values of
857
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TABLE I. Total energies in hartrees of the methane mole-
cule at three values of r0, the C-H bond length. (a) Ref. [9].
(b) Value obtained with the orbitals of Ref. [9] and L�2�

max � 6.
(c) Optimized value with L�2�

max � 2. (d) Optimized value with
L�2�

max � 4. (e) Optimized value with L�2�
max � 6.

Calculation�r0 2.0 2.05 2.1

(a) 240.125 68 240.128 22 240.126 98
(b) 240.125 22 240.127 79 240.126 52
(c) 240.180 02 240.181 06 240.178 36
(d) 240.186 75 240.187 90 240.185 38
(e) 240.187 28 240.188 29 240.185 62

r0, the C-H bond length, used by Pitzer. Table I also
shows the results obtained by Pitzer together with the result
of applying the present program to the orbitals found by
Pitzer; the latter results are in agreement to better than a
mhartree. The number of iterations to obtain a minimum
energy increases from 2 or 3 for L

�2�
max � 2 to 7 or 8 for

L
�2�
max � 6.
It is seen that the orbital optimization makes a substan-

tial improvement, of the order of 60 mhartrees, even on the
optimized Slater orbitals of Pitzer. A very large calculation
using Slater orbitals with fixed z parameters with 14 s and
18 p orbitals on the C nucleus and two s orbitals on each
proton has been made by Woznick [10] at r0 � 2.0665.
The result of 240.181 is in close agreement with these
results. A calculation at the same value of r0 by Krauss
[11] using GTOs with 9 s orbitals, 12 p orbitals on the C
nucleus, and 3 s orbitals on each proton has given a some-
what higher energy of 240.1668. Hashimoto and Osamura
[12] have made a complete optimization of the orbital pa-
rameters in a GTO calculation using 9 s orbitals and 15 p
orbitals on the C nucleus and 4 s orbitals on each proton.
Their result of 240.189 01 at r0 � 2.067 is slightly below
the present results.

The accuracy of these calculations is limited by the fi-
nite difference approximation, the truncation of the angular
momentum sums, and the degree of self-consistency. The
calculations have been made on a 256 point mesh, and the
finite difference approximation appears to be a negligible
source of error. The error due to lack of self-consistency is
also negligible. The error arising from the angular momen-
tum truncations seems to be most sensitive to the values of
858
Lmax and L
�1�
max and is substantially less than a mhartree.

This study illustrates the feasibility of numerically opti-
mizing the orbitals used in molecular calculations. The use
of such optimized orbitals can substantially reduce the size
of basis sets required and thereby reduce or eliminate some
of the problems associated with using very large bases. At
the very least, the optimized orbitals can provide valuable
benchmarks for comparison with or construction of con-
tracted Gaussian orbitals.

Although the development here has been based on the
single-configuration MO-LCAO approach, the same meth-
ods will be applicable to other methods for molecular elec-
tronic structure calculations.
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