
VOLUME 84, NUMBER 5 P H Y S I C A L R E V I E W L E T T E R S 31 JANUARY 2000

822
Relativistic Effects of Light in Moving Media with Extremely Low Group Velocity
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A moving dielectric medium acts as an effective gravitational field on light. One can use media with
extremely low group velocities [Lene Vestergaard Hau et al., Nature (London) 397, 594 (1999)] to create
dielectric analogs of astronomical effects on Earth. In particular, a vortex flow imprints a long-ranging
topological effect on incident light and can behave like an optical black hole.

PACS numbers: 42.50.Gy, 04.20.–q
According to general relativity, acceleration and gravi-
tation are equivalent in the absence of other forces. A
freely falling test particle, seen in any local inertial sys-
tem, moves along a straight line. And yet, the inertial
frames along the particle’s path are nontrivially connected;
space-time is curved such that the trajectory is bent in gen-
eral. An analogous situation occurs when light propagates
in a dielectric medium [1,2]. Seen locally, light rays are
straight lines in all volume elements of the medium. Seen
globally, the medium elements might move in different di-
rections and drag the light or the refractive index may vary
such that light rays are curved. Seen in four-dimensional
space-time, light follows a zero-geodesic line with respect
to a metric that comprises the medium’s dielectric proper-
ties [1,2].

Ordinary dielectrics require astronomical velocity gradi-
ents to establish some of the spectacular effects of general
relativity, velocities that are comparable with the speed of
light in the medium. Recently, extraordinary dielectrics
that are distinguished by an extremely low group veloc-
ity of light have been made on Earth [3]. As we shall
describe in this paper, the reported experiment is sen-
sitive enough to detect quantum vortices via an optical
Aharonov-Bohm effect. Furthermore, a vortex may be-
come an optical black hole. A vortex turns out to generate
an event horizon for light, a radius of no return, beyond
which light falls inevitably towards the vortex singularity.
Similar to a star that turns into a black hole when the gravi-
tational Schwarzschild radius exceeds the star’s size, a vor-
tex appears as a black hole when the optical Schwarzschild
radius exceeds the radius of the core (the size of the “eye
of the hurricane”).

Optical effects of moving media have been known for a
long time. In 1818 Fresnel [4] concluded correctly from an
ether theory that a moving medium will drag light. Fizeau
[5] observed Fresnel’s drag effect in 1851. In 1895 Lorentz
[6] derived an additional drag component that is due to op-
tical dispersion (the frequency dependence of the refrac-
tive index). Zeeman [7] was able to verify experimentally
Lorentz’ effect. In 1923 Gordon [1] formulated the electro-
magnetism in dispersionless media in terms of an effective
gravitational field (an effective non-Euclidean metric). Let
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us develop a theory of light propagation in highly disper-
sive and transparent media in the spirit of Gordon’s Licht-
fortpflanzung nach der Relativitätstheorie [1].

The model.—Imagine that a dielectric consists of small
volume elements. Each element is sufficiently small such
that the refractive index n and the medium velocity u do
not vary significantly, but each volume element is large
enough to sustain several optical oscillations. We thus
assume that the properties of the dielectric do not vary
substantially over the effective optical wave length in the
medium. In this case the propagation of light in each
medium element does not depend on the polarization, and
we can describe light waves by the scalar dispersion rela-
tion

k02 2
v02

c2 2 x�v0�
v02

c2 � 0 . (1)

Here k0 denotes the local wave vector, v0 is the local opti-
cal frequency, and we use primes to distinguish quantities
in locally comoving medium frames. Let us specify the
susceptibility x�v0�.

Electromagnetically induced transparency [8] has been
applied to create dielectrics with extraordinary low group
velocity [3]. Here a coherent electromagnetic wave drives
the atoms of the medium into a quantum-superposition
state such that a probe wave can travel through the dielec-
tric that would otherwise be completely opaque. Under
ideal circumstances the probe experiences at a certain fre-
quency v0 a vanishing susceptibility x and a real (and
extremely low) group velocity without group-velocity dis-
persion [9]. We thus assume that in the spectral vicinity
of v0 the susceptibility is, up to terms of third order in
v0 2 v0,

x�v0� �
2a

v0
�v0 2 v0� 1 O��v0 2 v0�3� . (2)

We obtain from Eqs. (1) and (2) the group velocity
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For having a definite geometry in mind, we imagine that
the medium flow is perpendicular to one axis in space. The
driving wave shall run in the direction of this axis, i.e.,
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orthogonally to the motion of the medium. This arrange-
ment has the advantage that the atoms of the medium are
not sensitive to the first-order Doppler effect of the drive
(and higher-order effects turn out to be irrelevant for our
purpose). A monochromatic probe beam of frequency v0
shall propagate orthogonally to the driving beam, i.e., in
the plane where the medium moves. Consequently, the
probe experiences the full range of Doppler detuning of
the susceptibility (2) at the sharp resonance v0, while still
propagating in a transparent medium.

The metric.—How does the moving medium appear to
the probe? Let us transform the dispersion relation (1) in
locally comoving medium frames to the laboratory frame.
We notice that k02 2 v02�c2 is a Lorentz scalar, and obtain

k2 2
v

2
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c2 2 x�v0�
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c2 � 0, v0 �
v0 2 u ? kq

1 2
u2

c2

,

(4)

where u denotes the velocity field of the medium. Note
that the local Lorentz transformations from the medium
frames to the laboratory frame mix the components of the
electromagnetic field-strength tensor F0

mn . However, since
the dispersion relation (1) in the medium is valid for all
components of F0

mn , the light propagation in the laboratory
frame is polarization independent [2]. Relativistic effects
of light in slowly moving media diminish with increasing
order in u�c. Therefore, we expand the dispersion relation
(4) to second order in u�c, use the susceptibility (2), and
arrive at a result that we can formulate in the spirit of Gor-
don’s geometric theory [1,2]. We introduce the covariant
wave vector,

kn �

µ
v0

c
, 2k

∂
, (5)

and, adopting Einstein’s summation convention, obtain the
dispersion relation

gmnkmkn � 0 (6)
with
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The symbol ≠ denotes the three-dimensional tensor prod-
uct. We regard gmn as the contravariant metric tensor
of the moving medium, whereas the inverse of gmn is
the covariant tensor gmn . Light rays turn out [1,2] to be
zero-geodesic lines of

ds2 � gmndxmdxn , dxm � �cdt, dx� . (8)

The moving dielectric appears as a curved space-time, i.e.,
as an effective gravitational field, to light that travels inside.

Let us introduce the contravariant wave vector km with
respect to the metric gmn of the medium,

km � gmnkn . (9)
One can show [2] that this four-vector points into the di-
rection of light propagation,

km �
k0

c
dxm

dt
. (10)

In other words, km is proportional to the velocity vector
of light, i.e., km appears as a kinetic momentum, whereas
the covariant wave vector kn is the canonical momentum
of the light ray.

Optical Aharonov-Bohm effect.—The distinction be-
tween canonical and kinetic momentum is as vital to the
physics of charged particles in magnetic fields as the dis-
tinction of co- and contravariant vectors is to general rela-
tivity. The two areas are related. In fact, we obtain from
the definition (9) and the metric (7) to lowest order in u�c

k0 �
v0

c
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c
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c

. (11)

We apply the dispersion relation (6) and get, up to second-
order terms,

3X
i�1
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v

2
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c2 . (12)

In geometrical optics [2] one can translate a dispersion
relation into a wave equation for the complex positive-
frequency component of the field-strength tensor Fmn by
substituting 2i= for k. In particular, we obtain from the
relation (12)µ

2i= 1 a
v0

c2 u
∂2

Fmn �
v

2
0

c2 Fmn . (13)

This is precisely the nonrelativistic Schrödinger equation
of a charged matter wave in a magnetic field. Conse-
quently, light in a slowly moving dispersive medium be-
haves like an electron wave where the medium velocity u
plays the role of the vector potential [10].

Aharonov and Bohm discovered [11] that under certain
circumstances a charged matter wave attains an observable
phase shift without experiencing a force. In particular, a
thin solenoid produces a vanishing magnetic field outside
the coil, and hence generates no force, and yet, matter
waves that enclose the solenoid experience a noticeable
phase shift due to a vortex of the vector potential. Conse-
quently, in the case of light in moving media, a vortex flow
will not bend light in first order, but the vortex will imprint
a phase shift onto the incident light [12,13]. In cylindrical
coordinates a vortex with vorticity 2pW has the velocity
profile

u �
W

r
ew . (14)

We compare the wave equation (13) with the Schrödinger
equation of Aharonov and Bohm [11], and read off the
phase shift

wAB � 2pnAB, nAB � a
v0

c
W
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(15)
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in the limit of a low group velocity yg. Electromagneti-
cally induced transparency has made it possible to reduce
yg to 17 m�s [3]. In this case the optical Aharonov-Bohm
effect is sensitive enough to detect a single quantum vortex
with

W �
h̄
m

. (16)

Indeed, we obtain for a frequency v0 of 3 3 1015 s21

and for sodium with a rest mass m of about 23 proton
masses a wAB of 1022. This phase shift between waves
that passes the vortex from different sides can be made
visible via phase-contrast microscopy [14]. The optical
Aharonov-Bohm effect explores the long-ranging topo-
logical nature of a quantum vortex, similar to the vortex
detection [15] using two interfering condensates. In con-
trast to this technique, the optical effect may allow in situ
observations of vortices.

Optical black hole.—A classical vortex generates a
strongly falling pressure near the vortex core. A tor-
nado, for example, attracts with ease substantial “test
particles” and tears them apart. Can a vortex attract
light? What happens near the core where the first-order
Aharonov-Bohm theory is destined to fail? Let us study
the light propagation using the Hamilton-Jacobi method
[16]. Here the covariant wave vector kn is the negative
four-gradient of the eikonal S, or,

v0 � 2
≠S
≠t

, k � =S . (17)

We interpret the dispersion relation (6) as the Hamilton-
Jacobi equation for light rays. In the case of the vortex
flow (14) we find in cylindrical coordinates
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(18)

The eikonal (18) characterizes a set of rays with com-
mon frequency v0 and angular momentum l�v0�c� that
are incident perpendicular to the vortex line. Note that near
the origin the modulus of the wave vector grows at least as
rapidly as the flow velocity. The ratio j=Sj�u approaches
here 2

p
a�l�r� �v0�c2� for l fi 0 and

p
a�v0�c2� for l �

0. Consequently, even in the vicinity of the vortex core,
geometrical optics is well justified to describe the propa-
gation of light.

How close can light come to the core and still manage
to escape? Let us analyze the turning points r0 of the
radial motion where �dR�dr�2 vanishes. For each value
of l we obtain two points, an outer �1� and an inner
turning point �2�,

r2
0 �

1
2c2

µ
w2

0 6

q
w4

0 2 16ac2l2W 2

∂
, (19)

w2
0 � �a 1 1�c2l2 2 a�cl 2 W �2, (20)
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provided that the argument of the square root in Eq. (19)
is non-negative. Otherwise real turning points do not
exist, and the incident light is doomed to fall towards
the vortex core. At two critical angular momenta l6 the
inner and the outer turning points coincide at r6 � r0.
In this case we get from Eq. (19) the relation

w2
0 � 64

p
a W cl6 (21)

with, assuming a positive vorticity 2pW , the plus sign
for positive l1 and the minus sign for negative l2, be-
cause w2

0 is non-negative. Light rays with angular mo-
menta inside the interval �l2, l1� have no turning points.
Consequently, the critical angular momenta l6 mark the
transition from the fall into the core and a chance to es-
cape. We solve Eqs. (20) and (21) for l6, obtain

l6 �
W

c

p
a

h
2
p

a 6 2 6

q
�2

p
a 6 2�2 1 1

i
,

(22)

and get in the limit of low group velocities yg when
a � c�yg ¿ 1,

l2 � 22
W

yg
, l1 �

W

2c
. (23)

Finally, we obtain from Eqs. (19), (21), and (23) the cor-
responding critical radii r6 � r0, where turning points
cease to exist,

r2 � 2
W

c

µ
c
yg

∂3�4

, r1 �
W

c

µ
c
yg

∂1�4

. (24)

Regardless which path the light is following, as soon as
a light ray comes closer than r1 to the vortex core, the
light faces no other choice than to fall towards the singu-
larity. The optical Schwarzschild radius r1 determines a
point of no return (in contrast to trajectories in other sin-
gular potentials [17] where escaping particles may come
arbitrarily close to the singularity). The larger critical ra-
dius r2 is a weak Schwarzschild radius where light rays
with positive angular momenta can escape but those with
negative l are trapped. Light rays with positive angular
momentum have the advantage of traveling with the flow,
whereas those with negative l swim against the current,
and are efficiently deaccelerated and finally captured.

One might object that the vortex flow (14) of our model
will allow medium velocities that exceed c near the ori-
gin. Note, however, that the flow velocities u6 at the two
Schwarzschild radii are well below c,

u2 �
c
2

µ
yg

c

∂3�4

, u1 � c

µ
yg

c

∂1�4

. (25)

Long before the vortex (14) becomes superluminal, the
falling pressure will produce a hole in the vortex core
(the eye of the hurricane). The vortex appears as an
optical black hole if the core radius is smaller than the
Schwarzschild radius. Suppose that one could reduce
the group velocity of light further to 1 cm�s. In this
case the velocity u1 at the hard Schwarzschild radius
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r1 reaches 7 3 105 m�s and the flow at the weak
Schwarzschild radius r2 is 2 m�s. The creation of a hard
black hole seems to be unrealistic with present technology.
However, a weak black hole could be made. For example,
one could utilize the torque of Gauss-Laguerre beams
[18] to create a classical vortex of a rapidly rotating
gas of alkali atoms [19]. Especially appealing would
be a quantum black hole with a single quantum vortex
(16) as the center of attraction. In alkali Bose-Einstein
condensates [20], the core radius is roughly given by
the healing length �8pra�21�2 with r being the density
and a the scattering length. For a sodium condensate
(r � 5 3 1018 m23 [3] and a � 2.75 3 1029 m) we
obtain a healing length of about 2 3 1026 m that sig-
nificantly exceeds the Schwarzschild radius r2 of about
1029 m. However, one could employ other alkali isotopes
and/or utilize Feshbach resonances [21] to increase the
scattering length and, consequently, to reduce the size of
vortex cores.

Summary.—A moving dielectric medium acts as an ef-
fective gravitational field on light [1,2]. One could employ
media with extremely low group velocities [3] to create di-
electric analogs of gravitational effects that usually belong
to the realm of astronomy. In particular, a vortex can cre-
ate a long-ranging Aharonov-Bohm effect on incident light
[10–13] and, on shorter ranges, can behave like a black
hole [22].
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