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Noise Induced Stability in Fluctuating, Bistable Potentials
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The overdamped motion of a Brownian particle in an asymmetric, bistable, fluctuating potential shows
noise induced stability: For intermediate fluctuation rates the mean occupancy of minima with an energy
above the absolute minimum is enhanced. The model works as a detector for potential fluctuations being
not too fast and not too slow. This effect occurs due to the different time scales in the problem. We
present a detailed analysis of this effect using the exact solution of the Fokker-Planck equation for a
simple model. Further we show that for not too fast fluctuations the system can be well described by
effective rate equations. The results of the rate equations agree quantitatively with the exact results.
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Models of overdamped Brownian particles in potentials
with one or more minima and barriers serve as paradigms
for many relaxation processes in physical, chemical, and
biological systems. The minima represent the stable or
metastable states of the system. Transitions from one state
to another are induced by the interaction with the environ-
ment. This interaction is typically described by a thermal
white noise. The dynamics of the system is dominated by
characteristic time scales which are given by the mean first
passage times for the escape out of the minima of the po-
tential. The simplest system in this class of models is the
problem of diffusion over a single potential barrier, pio-
neered by Kramers [1].

In many situations, the potential fluctuates due to some
external fluctuations, chemical reactions, or oscillations.
The most prominent model of this kind is a Brownian
particle in a symmetric bistable potential, subject to a
harmonic force. It serves as the standard model for sto-
chastic resonance [2]. In many other applications one has
to consider stochastic, correlated fluctuations of the po-
tential. Doering and Gadoua [3] investigated the situa-
tion of a symmetric, bistable fluctuating potential. They
found a local minimum in the mean first passage time as
a function of the barrier fluctuation rate. This effect has
been called resonant activation and has been studied in
detail by various people [4–9]. In most of these papers
either a symmetric bistable potential or the escape over a
single barrier has been studied. Escape rates for general
potentials and dichotomous as well as Gaussian fluctua-
tions of the potential have been calculated by Pechukas
and Hänggi [6]. Their results support a simple, physical
picture of activated processes with fluctuating barriers: If
the potential fluctuates fast, the rate for transitions over
the barrier is determined by the average barrier. If the
potential fluctuations are slow (static limit), the slowest
process determines the rate. In an intermediate regime the
rate is given by the average rate, which is greater than
the rate for fast or slow fluctuations. This picture has al-
ready been suggested by Bier and Astumian [5] on the
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basis of a simple model with a dichotomously fluctuating
linear ramp.

In many applications, one does not have a single barrier
or a symmetric, bistable potential. In a more general situ-
ation the potential will have several minima of different
depths. In equilibrium, the system rests most of the time
in the absolute minimum of the potential. But due to po-
tential fluctuations, the position of the absolute minimum
may fluctuate. Typical, biological examples of such a situ-
ation are membrane proteins like a cell surface receptor or
an ion channel. When a ligand binds to the receptor, it
changes the potential energy of the receptor and induces
a conformational change of the receptor molecule. If the
transition from one to the other conformation and back is
always more or less the same, a description of this transi-
tion by a single coordinate may be sufficient. Then it is
possible to model the conformational changes by the mo-
tion of a particle in a fluctuating potential.

The effect of a periodic electric field on membrane pro-
teins has been investigated theoretically [10] and experi-
mentally [11]. Astumian and Robertson [10] described
such a system by a two-state model with periodically
modulated rates. The effect of a periodic modulation can
be related to a stochastic, dichotomous modulation [12].
This clearly demonstrates the relevance of our results to
such biologically motivated models. We will come back
to this point at the end.

The motion of the overdamped particle in a fluctuating
potential can be described by a Langevin equation

�x � f�x, t� 1 j�t� , (1)

where f � 2
≠V
≠x . We are using units where the friction

constant and kB are unity. f (and V ) depend on t since the
potential fluctuates. j�t� is a thermal (white) noise, and
it satisfies �j� � 0, �j�t�j�t0�� � 2Td�t 2 t0�. In this
Letter, we restrict ourselves to the discussion of potentials
with two minima, separated by a barrier. The position
of the minima is 6xm and does not depend on t. The
maximum of V �x� is located at x � 0. The fluctuation
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of the potential is mainly a fluctuation of the depth
of the two minima. Let us consider first the simplest,
nontrivial version of such a model. Let us assume that
the potential fluctuation is a dichotomous process and
that V �x, t� takes the two different values V1�x� and
V2�x�. Further we assume that the absolute minimum
of V1�x� ���V2�x���� is the right (left) minimum. Such a
model contains various time scales: Four mean first
passage times for the two minima of V1�x� and V2�x�,
the intrawell relaxation times for V1�x� and V2�x�, and
the characteristic time scales for the fluctuation of the
potential. The mean first passage times and the intrawell
relaxation times are fixed by the form of the potential; the
fluctuation of the potential is an external parameter that
can be varied. In a biological model for a cell-surface
receptor, as mentioned above, it is determined, e.g., by
the concentration of the signaling molecule. Let V �x� �
1
2 �V1�x� 1 V2�x��, DV �x� �

1
2 �V1�x� 2 V2�x��. Then

V �x, t� � V �x� 1 z�t�DV �x� where z�t� is a random
process that takes two values 61. Its static distribution
is q0�z� � p1d�z 2 1� 1 p2d�z 1 1�. Let t be the
correlation time of this process, so that �z�t�z�t0�� �
�z�2 1 �1 2 �z�2� exp�2t�t�. Without loss of generality
we restrict ourselves to p2 # 1�2. What does one expect
for such a model? Let us first suppose that the temperature
is such that the typical barrier heights of the system are a
few T . If t is small compared to the intrawell relaxation
times of the potential, the systems can be described by an
effective static potential �V � �x� � V �x� 1 �z�DV �x�. The
stationary distribution is p0�x� � C exp�2�V � �x��T �.
In the static limit, the stationary distribution is p0�x� �
p1 exp�2V1�x��T � 1 p2 exp�2V2�x��T �. Suppose that
p1 is close to unity. Then the average potential is approxi-
mately given by V1�x� and p0�x� is approximately the
same for small or large t. In the following we will show
that between these two extreme situations an interesting
effect occurs: The mean occupancy of the minimum at
2xm, which is the minimum that has most of the time the
higher energy, may become very large. We will show that
this effect is related to resonant activation.

To calculate p0�x� or dynamic quantities of the system
one has to solve the Fokker-Planck equation

≠r�x, z, t�
≠t

� 2
≠

≠x

µ
f�x, z� 2 T

≠

≠x

∂
r�x, z, t�

1 Mzr�x, z, t� (2)

for this model. Here we assumed that the potential fluctu-
ations can be parametrized by a single stochastic variable
z�t�. r�x, z, t� is the joint probability density for the sto-
chastic variables x and z, and Mz is the generator of the sto-
chastic process z�t�. To obtain the stationary distribution
p0�x� �

R
dz r�x, z�, it is sufficient to analyze the station-

ary Fokker-Planck equation. A standard way to solve this
equation is to expand r�x, z� in the right eigenbasis of Mz .
If the potential is piecewise linear, one obtains a set of
coupled differential equations with constant coefficients,
which can be solved analytically. The remaining task is
to satisfy the continuity conditions for r�x, z�, which is a
simple linear algebraic problem. For the case of a dichoto-
mous process, the force is f�x, z� � f�x� 1 zDf�x� as
discussed above. In Fig. 1 we show results for the proba-
bility n̄ �

R0
2` p0�x� dx of the particle to sit in the left

minimum of the fluctuating potential as a function of the
correlation time t, and for various values of p1. The
choice of the potential is arbitrary, and similar results can
be obtained for other potentials as well. The results for n̄
show that the qualitative discussion for small and large t

given above is valid. But for intermediate t, n̄ is much
larger than expected. The system is able to detect fluctua-
tions that are not too fast or not too slow. Such fluctuations
enhance the occupancy of the left minimum, although it is
most of the time not the absolute minimum of the poten-
tial. We thus observe a noise induced stability for the state
which has most of the time the higher energy, at least when
p1 . 1�2. The results in Fig. 1 show that for large values
of p1 this effect is even stronger.

What is the reason for this effect? How can it be
described quantitatively and how does it depend on the
potential? To answer these questions, let us go back
to the general case (2). If t is large compared to the
intrawell relaxation times for the two minima of V �x, z�,
the dynamics of the system can be described by an effective
rate equation for the probability of the particle to sit in the
left minimum, n, or in the right minimum, 1 2 n. The
rate equation is given by

dn
dt

� 2r1�z�n 1 r2�z� �1 2 n� , (3)

FIG. 1. The mean occupancy in the left minimum of a piece-
wise linear, dichotomously fluctuating potential as a function
of t for various p1. The parameters are T � 0.3, p1 �
0.5, 0.6, . . . , 0.9, f1�x� is piecewise constant and takes the val-
ues 10, 1, 21, 2, 22, 210; f2�x� takes the values 10, 2, 22,
0.5, 20.5, 210. The values of x where f6�x� jumps are 24,
22, 0, 2, 4. The dashed lines are the results from (9).
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where r1,2�z� is the escape rate for the left or right mini-
mum of V �x, z�. If DV1,2�z� � V �0, z� 2 V �7xm, z� is
the depth of the potential, r1,2�z� ~ exp�DV1,2�z��T �. For
(3) we can again discuss the two limiting cases of large
or small t. For large t, the average occupancy is n̄�t !
`� � n` �

R
dz q0�z�n�z� where n�z� � r1�z���r1�z� 1

r2�z��. For small t, the particle feels average rates and the
mean occupancy is n̄�t � 0� � n0 � r1��r1 1 r2� where
ri �

R
dz ri�z�q0�z�. For the results presented in Fig. 1

the potential has been chosen such that n0 is larger than n`

and also larger than the occupancy determined by the aver-
age potential �V � �x�. This explains qualitatively the t de-
pendence of n̄ in Fig. 1. Let us now compare the results of
the rate Eq. (3) with the results of the Fokker-Planck equa-
tion quantitatively. To calculate the stationary probability
n̄ as a function of t from (3), we use the Fokker-Planck
equation for the density p�n, z, t�,

≠p�n, z, t�
≠t

�
≠

≠n
��r1�z� 1 r2�z��n 2 r2�z�	p�n, z, t�

1 Mzp�n, z, t� . (4)

The stationary probability n̄ �
R1

0 dn np0�n� can be
obtained from the stationary distribution p�n, z�. It
is possible to calculate the stationary distribution
p0�n� �

R
dz p�n, z� for a dichotomous process [13],

p0�n� � C�n 2 ñ� �n 2 n2�a221�n1 2 n�a121, (5)

where

a6 �
�p1r1 1 p2r2� �n6 2 n0�

tr1r2�n1 2 n2�
, (6)

ñ �
r21 2 r22

r1 2 r2

. (7)

C is a normalization constant. We introduced r6 � r16 1

r26. ri6 are the two values for the fluctuating rates ri�z�,
and n6 � r26�r6. The rates are given by (see [5], where
T and L are set to unity; Leff occurs instead of L, since
we do not have a linear ramp)

ri6 �
DV 2

i6L2
eff

T
�exp�DVi6�T � 2 DVi6�T 2 1�21.

(8)

p0�n� vanishes outside the interval between n2 and n1 as
it should have been expected. ñ does not lie in this interval.
For n̄ one obtains

n̄ � n0 1 �n` 2 n0�
t

t̄ 1 t
, (9)

where t̄ �
p1

r2
1

p2

r1
. This shows that for a dichotomous

process one always has a monotonic behavior of n̄ as a
function of t and the characteristic time scale for the tran-
sition from n0 to n` is given by t̄. For more general noise
processes it is possible to calculate n̄ as well. The calcu-
lation is much more involved, but the typical behavior of
n̄ is the same as for the dichotomous case [13]. In Figs. 1
820
and 2 we compare results of the effective rate equations
with results of the fluctuating potential. The agreement is
indeed excellent for sufficiently large t. The value of t

where the transition occurs, and the value of the maximum
of n̄ agree well with the exact results. The agreement be-
tween the rate theory and the exact results becomes better
for smaller temperatures (see Fig. 2), which is clear since
the rate equations are valid only for low temperatures. The
motion in the average potential, i.e., the behavior of the
system for small t, cannot be described this way, since
the rates in the average potential differ from the aver-
aged rates. The validity of the two-state model breaks
down when t becomes smaller than the intrawell relax-
ation times. Nevertheless, we are able to understand why
the occupancy n̄ in the minimum that has usually the higher
energy has the features shown in Fig. 1. Using the average
potential, the average rate, and the average occupancy we
are able to calculate analytically the three values of n̄. The
transition between these values occurs at t scales given by
the intrawell relaxation time and by t̄. This also explains
the results in Fig. 2, which shows how the effect depends
on the temperature. For lower values of the temperature,
t̄ becomes larger, and the values of n change due to the
dependence of the rates on T .

Comparing the above results with calculations for the
mean first passage time shows that the noise induced sta-
bility is related to resonant activation. To calculate the
mean first passage time, one has to introduce an absorb-
ing boundary at the maximum of the potential and has to
solve the Fokker-Planck equation with this boundary. The
mean first passage time depends on the initial condition
r�x, z, 0�, but usually the relaxation within the potential
well is fast compared to the mean first passage time and
the dependence on the initial condition is weak. As the ini-
tial condition we choose r�x, z, 0� � d�x 2 xi�d�z 2 zi�

FIG. 2. n̄ as a function of t for p1 � 0.7 and T � 0.1, 0.2,
0.3, 0.4, 0.5 (from top to bottom). The potential is the same as
in Fig. 1. The dashed lines are the results from (9)
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with xi � 6xm. Let x � 0 be the absorbing boundary.
The solution of the Fokker-Planck equation is denoted by
r�x, z, tjxi , zi , 0�. The mean first passage time is then
given by [14]

tMFPT �
Z

dz
Z 0

2`
dx r1�x, zjxi� , (10)

where

r1�x, zjxi� � 2

øZ `

0
t

≠

≠t
r�x, z, tjxi , zi , 0�

¿
zi

. (11)

The average is taken with respect to the stationary distribu-
tion of zi . For a piecewise linear potential r1�x, zjxi� can
be calculated using the same methods as for r�x, z� de-
scribed above. Bier and Astumian [5] calculated the mean
first passage time for a linear ramp, which is similar to our
situation. They showed that for not too small t the system
is well described by simple rate equations, as in our case
as well. Using the rate equations one obtains for the mean
first passage times [Eq. (15) in Ref. 5] ]

tMFPT�t� � t0i 1 �t`i 2 t0i�
t

t`i 1 t
, (12)

where t0i � ri
21 and t`i � p1�ri2 1 p2�ri1. The t

dependence of the mean first passage time is similar to the
t dependence of n̄ in (9). The characteristic time t̄ has
the same form as t`i .

As already pointed out, it is possible to extend our cal-
culations to various noise processes. The main qualitative
features of the system are the same. Our results show that
an asymmetric, fluctuating, bistable system can detect fluc-
tuations that are not too slow and not too fast. For such
fluctuations the occupancy of the state that has usually the
higher energy is enhanced. The results show that this ef-
fect may be very large, depending on the parameters of the
system. For the largest value of p1 in Fig. 1, the mean
occupancy in the left minimum is very small for slow and
fast fluctuations, but reaches a large value for intermediate
values of t. If one lowers the temperature or modifies the
potential it is possible to obtain an even larger effect, as
shown in Fig. 2.

To some extent noise induced stability can be com-
pared to noise enhanced stability first found numerically
by Dayan et al. [15] and observed experimentally by
Mantegna and Spagnolo [16], but there are several dif-
ferences. The effect called noise enhanced stability in
[16] is observed in a periodically driven system with
a single, metastable minimum. The system remains
in the metastable minimum for some time given by
the mean first passage time for the barrier, and the
mean first passage time has a maximum at some noise
intensity. This effect is related to stochastic reso-
nance. In our case the potential fluctuates stochastically
with some correlation time t and has two minima. The
less stable minimum is the absolute minimum in some
configurations of the potential, but most of the time this
minimum is metastable. Nevertheless, it can be highly
occupied.

As mentioned above Astumian and Robertson investi-
gated a two-state model with periodically modulated rates
to describe the effect of an oscillating electric field on
membrane proteins. Their results are in qualitative agree-
ment with our results for the model with dichotomously
fluctuating rates. One should expect that our results for the
motion of a particle in a fluctuating potential, described by
a Fokker-Planck equation, are relevant for such biologi-
cally motivated models. This is important, because the
description by a Fokker-Planck equation is much more
general. Furthermore, for large frequencies or small cor-
relation times the system feels an average potential that
cannot be described by fluctuating rates.
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