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Decoherence via the Dynamical Casimir Effect
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We derive a master equation for a mirror interacting with the vacuum field via radiation pressure.
The dynamical Casimir effect leads to decoherence of a superposition state in a time scale that depends
on the degree of “macroscopicity” of the state components, and which may be much shorter than the
relaxation time scale. Coherent states are selected by the interaction as pointer states.
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Within the framework of quantum mechanics, a closed
system may be found in any quantum state of the Hilbert
space. As pointed out by Schrödinger [1], this is in
apparent contradiction with the classical behavior of
macroscopic systems. However, macroscopic systems are
seldom isolated, and the interaction with the environment
engenders the decay of most states into a statistical
mixture of “pointer states,” which are linked to classical
properties of the system [2]. Coherent superpositions of
pointer states decohere into a statistical mixture in a time
scale which is usually of the order of the damping time
divided by some parameter representing the degree of
“classicality” of the states. The decoherence time scale
for a microwave field in a high-Q superconducting cavity
was recently measured [3] to be in agreement with such
prediction [4].

Several different heuristic models for the coupling with
the environment have been considered [5]. In this paper,
we show that the coupling with the quantum vacuum field
via radiation pressure provides a more fundamental, ab ini-
tio model for decoherence. The Casimir effect for moving
boundaries has attracted a lot of interest recently [6]. The
vacuum radiation pressure force dissipates the mechanical
energy of an oscillating mirror, and the associated photon
emission effect could in principle be measured experimen-
tally [7]. Usually, one assumes that the mirror follows
a prescribed trajectory, thus neglecting the recoil effect.
However, here we want to focus on the mirror as a dy-
namical quantum system, hence the need to take the full
mirror-plus-field dynamics into account. Jaekel and Rey-
naud treated this problem by using linear response theory
[8], in order to calculate the fluctuations of the position of
a dispersive mirror driven by the vacuum radiation pres-
sure. Mass corrections were also obtained in Refs. [9]
and [10].

In this paper, we consider a nonrelativistic partially re-
flecting mirror of mass M (position q and momentum p)
in a harmonic potential of frequency v0, and under the
action of vacuum radiation pressure. We take a scalar
field in 1 1 1 dimensions, and neglect third and higher
order terms in y�c, where y is the mirror’s velocity (we
set c � 1). We start from the Hamiltonian formalism
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developed in Ref. [10]. The Hamiltonian is given by
H � HM 1 HF 1 Hint, where

HM �
p2

2M
1

Mv
2
0

2
q2, (1)

HF �
Z dx

2
�P2 1 �≠xf�2� 1 Vf2�x � 0� (2)

is the Hamiltonian for the scalar field f (P � ≠tf is
its momentum canonically conjugate) under the boundary
condition corresponding to a partially reflecting mirror at
rest at x � 0, where the coupling constant V also plays
the role of a transparency frequency, the frequency-depen-
dent reflection amplitude being R�v� � 2iV��v 1 iV�
[9,10]. Since the emitted photons have frequencies smaller
than v0, the perfectly reflecting limit corresponds to v0 ø
V. We allow in principle for arbitrary values of v0�V, but
assume from the start that h̄v0�M, which is of the order of
the recoil velocity of the mirror, is very small. The inter-
action Hamiltonian Hint describes, on one hand, the modi-
fication of the boundary condition for the field due to the
motion of the mirror, and, on the other hand, the modifi-
cation of the mirror’s motion engendered by the radiation
pressure force. The first effect leads to the emission of
photon pairs out of the vacuum state (dynamical Casimir
effect), whereas the second leads to dissipation and deco-
herence of the mirror’s motion, as shown below. To second
order in y�c, we have

Hint � 2
pP
M

1
P 2

2M
2

1
2

Vf2�0�
p2

M2 , (3)

where P � 2
R

dx ≠xf≠tf is the field momentum opera-
tor. In the right-hand side of (3), the first term is the most
important, yielding the effects of dissipation and decoher-
ence. The second term does not depend on the mirror’s
variables, and hence will be of no relevance here, whereas
the third term, being already of second order in y�c, is
taken only to first order in perturbation theory. As dis-
cussed in Ref. [10], it provides a contribution to the mir-
ror’s mass shift.

We derive a master equation for the reduced density ma-
trix of the mirror r�t� by assuming that at t � 0 the mirror
© 2000 The American Physical Society
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and the field are not correlated, so that the density matrix
of the combined system r̃ is written as r̃�0� � r�0� ≠ rF ,
where rF is the density matrix of the field alone. Then we
compute r̃�t� up to second order in the perturbation Ham-
iltonian Hint. Note that the small perturbation parameter is
the mirror’s velocity y�c, and not the coupling constant
V, which is incorporated in the field Hamiltonian HF . Fi-
nally, the master equation for r�t� is obtained by tracing
r̃�t� over the field variables, taking the field to be in the
vacuum state. We find

ih̄ �r �

∑
HM 2

DM�t�
M

p2

2M
, r

∏
2 G�t� �p, �q, r��

2
i
h̄

D1�t� ���p, �p, r���� 2
i
h̄

D2�t� ���p, �q, r���� . (4)

The mass shift in (4) is given by DM�t� � DM1 1

DM2�t�, where the cutoff dependent DM1 � �Vf2�0�	 is
the only (first order) contribution of the p2 term in Eq. (3).
It was derived earlier by different methods in [9] and
[10]. Except for DM1, the terms in (4) come from second
order perturbation theory. The corresponding coefficients
are calculated from vacuum correlation functions of the
momentum operator. The mass shift DM2�t� and the
damping coefficient G�t� are obtained from the antisym-
metric correlation function j�t� � ��P �t�,P �0��	, which
is connected to the susceptibility describing how the field
momentum is affected by the motion of the mirror (and the
corresponding modification of the boundary conditions).
In fact, we show below that G�t� is closely connected to
the photon emission effect and the associated radiation
reaction force that damps the motion so as to enforce
energy conservation. The diffusion coefficients D1�t� and
D2�t� are obtained from the symmetric correlation func-
tion s�t� � ��P �t�,P �0��	 2 2�P 	2, which represents
the vacuum fluctuations.

Since P is quadratic in the field operators, the cor-
relation functions are obtained from the two-photon
matrix elements �0jP �t� jv1, v2	, which are calculated by
using the normal mode expansion for the field operator.
The spectral density J�v� is defined as the Fourier
transform of j�t�. For v . 0, J�v� results from the
contribution of two-photon states with v1 1 v2 � v.
We find J�v� � �2�p�h̄2Vz �v�V� with z �u� �
ln�1 1 u2���2u� 1 �arctanu��u2 2 1�u, whereas the
Fourier transform of s�t� is e�v�J�v� [e�v� is the sign
function]. The transparency frequency V sets a frequency
scale for the behavior of J�v�. Thus, for v ø V the
spectral density is linear (“Ohmic” environment), whereas
for high frequencies it goes to zero as z �u� 
 ln�u��u,
due to the mirror’s transparency at frequencies v ¿ V.
We find

DM2�t� �
2h̄V

p2

Z `

2`
dvz �v�V�

sin2��v 2 v0�t�2�
v 2 v0

,

(5)
G�t� �
h̄Vv0

2p2M

Z `

2`
dvz �v�V�

sin��v0 2 v�t�
v0 2 v

, (6)

D1�t� �
h̄2V

2p2M2

Z `

2`
dv e�v�z �v�V�

sin��v0 2 v�t�
v0 2 v

,

(7)

D2�t� �
h̄2v0V

p2M

Z `

2`
dv e�v�z �v�V�

3
sin2��v0 2 v�t�2�

v0 2 v
. (8)

The function sin��v0 2 v�t���v0 2 v� in Eqs. (6) and
(7) has a peak of width 2p�t at v � v0. For large times,
Vt ¿ 1, the spectral density is approximately constant
over the width of this peak, and then may be taken out
of the integral, yielding

G �
h̄Vv0

2pM
z �v0�V� 


h̄v
2
0

12pM
, (9)

the last approximation being valid in the perfectly reflect-
ing limit. If we also assume that v0t ¿ 1, Eq. (7) yields
D1 � h̄G��Mv0�. Accordingly, for large times the damp-
ing and diffusion coefficients have constant values that re-
sult from the contribution of two-photon states jv1, v2	
such that v1 1 v2 � v � v0. This is precisely the con-
dition satisfied by the photon pairs generated in the dy-
namical Casimir effect [6]. In fact, the damping rate G

as given by Eq. (9) is directly connected to the dissipative
force on the moving mirror F � h̄x000��6p� [11] (for sim-
plicity we consider the perfectly reflecting limit). Indeed,
the equation of motion for the average position then reads
x00 � 2v

2
0x 1 h̄x000��6pM�, whose solution in the limit

h̄v0�M ø 1 decays as exp�2h̄v
2
0 t��12pM�� in agree-

ment with Eq. (9).
The asymptotic values of the dispersive terms DM2�t�

and D2�t� do not originate, on the other hand, from the
neighborhood of v � v0. In the perfectly reflecting limit,
we neglect v0 in the denominator in Eq. (5), and, when
Vt ¿ 1, replace the sine squared by one-half. Integration
of the resulting expression over the whole frequency inter-
val yields DM2 
 h̄V��2p�. Accordingly, for large times
we find the same mass correction obtained in [10] from
stationary perturbation theory.

From these results, we may address two fundamental is-
sues: (i) find out the pointer states; (ii) estimate the deco-
herence time scale. In the context considered here, pointer
states are the most robust elements of the Hilbert space
with respect to the motional interaction with the vacuum
field. A simple test was proposed in Ref. [12], based on
the idea that for pointer states the rate of information loss
is minimum. Such a rate is measured with the help of the
linear entropy s � 1 2 Trr2 (s � 0 for a pure state and
greater than zero for a mixture). We calculate the rate of
799
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entropy increase from the master equation (4), assuming
that the initial state is pure:

�s�t� � 2G�t� �s�t� 2 1� 1
4D1�t�

h̄2 �Dp�2 1
2D2�t�

h̄2 sq,p ,

(10)

where �Dp�2 is the momentum dispersion and sq,p �
��q, p�	 2 2�p	 �q	 (with all operators evaluated at the
same time t). The first term in Eq. (10) leads to a decrease
of entropy which does not depend on the initial state. Thus,
it is not relevant for the determination of the pointer states,
and will be left out of our discussion.

We first consider the effect of the last two terms in
Eq. (10) in the perfectly reflecting limit. In Fig. 1 we plot
the diffusion and damping coefficients as functions of v0t
for v0�V � 1024. D1�t� develops an initial jolt for times
of the order of V21 and then decreases to the asymptotic
value �D1�perf � h̄2v0��12pM2� for t � 1�v0. If we in-
tegrate Eq. (10) over many periods of oscillation, from
t � 0 to t � T � n2p�v0, the contribution to the en-
tropy of the initial jolt is negligible, allowing us to replace
the diffusion coefficients by their constant asymptotic val-
ues. When computing sq,p�t� and �Dp�2�t� in Eq. (10),
we take the free evolution (corresponding to the harmonic
oscillator Hamiltonian HM) of the mirror’s operators q and
p (weak coupling approximation). We get

s�T � � 2T
D1

h̄2 ��Dp�2
0 1 �Mv0�2�Dq�2

0� , (11)

where �Dp�2
0 and �Dq�2

0 represent the dispersions for
the initial state. Note that D2�t� does not contribute
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FIG. 1. Diffusion and damping coefficients as a function of
time in the perfect-reflector limit v0�V � 1024 ø 1. Here
D1 � h̄2v0��12pM2� and G � h̄v

2
0��12pM� are the asymp-

totic limits of D1�t� and G�t�. The insets show the behavior of
these two time-dependent coefficients for short times.
800
to the time-averaged entropy production. The mini-
mum s�T � given the constraint DqDp $ h̄�2 is for
Dq2 � h̄��2Mv0�, Dp2 � Mh̄v0�2. Thus, as in the
problem of quantum Brownian motion (QBM) with
interaction Hamiltonian linear in the position operator
[12], the pointer basis consists of coherent states.

The opposite limit v0 ¿ V corresponds to dominant
frequencies of the environment slow with respect to the
mirror’s own time scale. However, since the spectral den-
sity J�v� decays too slowly for v ¿ V, field frequencies
of the order of v0 provide a significant contribution even in
this limit. As a consequence, the vacuum field does not be-
have as an adiabatic environment in the sense of Ref. [13].
In Fig. 2, we plot the diffusion and damping coefficients as
functions of v0t for v0�V � 104. They oscillate around
their asymptotic values with (angular) frequency v0 and
with an amplitude of oscillation that decays in a time
t � 1�V [14]. The oscillatory terms do not contribute to
the entropy increase when we average over many oscilla-
tions. Hence Eq. (11) also holds in this case, although the
rate of entropy increase is much smaller than in the per-
fect-reflecting limit, since the asymptotic limit of D1�t� is
now D1 � 6�V�v0�2 ln�v0�V��D1�perf ø �D1�perf.

In order to estimate the decoherence time scale,
we take, at t � 0, the superposition state jc	 �
�ja	 1 j 2 a	��

p
2, with a � iP0�

p
2Mh̄v0. The cor-

responding Wigner function is

W � Wm 1
1

p h̄
exp

∑
2

q2

2�Dq�2 2
2p2�Dq�2

h̄2

∏

3 cos

µ
2P0q

h̄

∂
, (12)
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FIG. 2. Diffusion and damping coefficients as a func-
tion of time in the high-transmission limit v0�V �
104 ¿ 1. Here D1 � h̄2V2 ln�v0�V���2pM2v0� and
G � h̄V2 ln�v0�V���2pM� are the asymptotic limits of D1�t�
and G�t�.
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with Dq �
p

h̄��2Mv0�, and where Wm corresponds
to the statistical mixture rm � �1�2� �ja	 �aj 1 j 2

a	 �2aj�. In phase space, Wm has two peaks along the
momentum axis (at 6P0). The second term in Eq. (12)
originates from the interference between the two state
components, and hence represents the coherence of the
state. Since it oscillates along the q axis in phase space,
diffusion in position will damp the coherence at a maxi-
mum rate given by 2D1≠2

qW�W , with, from Eq. (12),
≠2

qW 
 2�2P0�h̄�2W . After averaging the decoherence
rate over a period of oscillation [15], we find that the
decoherence time scale td is

td �
h̄2

2P2
0D1

�
G21

4jaj2
. (13)

To clarify the connection between decoherence and the
dynamical Casimir effect, we present a second deriva-
tion of Eq. (13), based on the concept of entanglement
between mirror and field on account of the generation
of photon pairs. At t � 0, the quantum state jC	 of the
complete mirror-plus-field system is jC	0 � jc	 ≠ j0	.
Instead of tracing over the field operators, we follow the
evolution of the field state (in the interaction picture)
to find jC	t � �ja	 ≠ jf1	t 1 j 2 a	 ≠ jf2	t��

p
2,

where jf6	t is computed from first order perturbation
theory assuming a classical prescribed motion:

jf6	t � B�t� j0	 6
1
2

Z `

0
dv1

Z `

0
dv2 b�v1, v2; t�

3 jv1, v2	 , (14)

where

b�v1, v2; t� �
i
h̄

�v1, v2jP j0	
Z t

0
dt0 ei�v11v2�t0 �q�t0�

is the two-photon amplitude corresponding to the mir-
ror’s velocity �q�t� � 2i

p
2h̄v0�M a cos�v0t� associated

to the state ja	, whereas jB�t�j2 is determined by the nor-
malization condition �f6 jf6	 � 1. Since the amplitude
is proportional to the velocity, it has an opposite sign when
associated to j 2 a	, as shown in Eq. (14). When v0t ¿
1, the two-photon probabilities are proportional to the time
t, and related to the relaxation rate G. Then, from Eq. (14)
we derive r�t� 2 rm � �1 2 t�td� �r�0� 2 rm� , with td

given by (13).
According to Eq. (13), decoherence is faster than energy

dissipation by a factor that represents the degree of “macro-
scopicity” of the coherent states. In fact, jaj2 is twice
the ratio between the energy of the coherent state and the
zero-point energy of the harmonic oscillator. Therefore,
Eq. (13) provides an additional illustration of the meaning
of the limit jaj ¿ 1 as the classical limit of the quan-
tum harmonic oscillator. Moreover, Eq. (13) also shows
that the decoherence rate increases with the distance be-
tween the two coherent components in phase space. We
have confirmed the role of coherent states in the under-
standing of the classical limit by showing that they are the
pointer states. Remarkably, classical behavior is obtained
from the mere inclusion of an unavoidable, intrinsically
quantum effect, the radiation pressure coupling with the
quantum vacuum field.
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