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In this article we show that the three-particle Greenberger-Horne-Zeilinger theorem can be reformu-
lated in terms of inequalities, allowing imperfect correlations due to detector inefficiencies. We show
quantitatively that taking into account these inefficiencies, the published results of the Innsbruck experi-
ment support the nonexistence of local hidden variables that explain the experimental results.

PACS numbers: 03.65.Bz
The issue of the completeness of quantum mechanics
has been a subject of intense research for almost a century.
Recently, Greenberger, Horne, and Zeilinger (GHZ) pro-
posed a new test for quantum mechanics based on correla-
tions between more than two particles [1]. What makes the
GHZ proposal distinct from Bell’s inequalities is that they
use perfect correlations that result in mathematical contra-
dictions. The argument, as stated by Mermin in [2], goes
as follows. We start with a three-particle entangled state

jc� �
1
p

2
�j1�1j1�2j2�3 1 j2�1j2�2j1�3� .

This state is an eigenstate of the following spin operators:

Â � ŝ1xŝ2yŝ3y , B̂ � ŝ1yŝ2xŝ3y ,

Ĉ � ŝ1yŝ2yŝ3x , D̂ � ŝ1xŝ2xŝ3x .

From the above we find that the expected correlations
E�Â� � E�B̂� � E�Ĉ� � 1. However, D̂ � ÂB̂Ĉ, and
we also obtain that, according to quantum mechanics,
E�D̂� � E�ÂB̂Ĉ� � 21. It is easy to show that these
correlations yield a contradiction if we assume that spin
exist independent of the measurement process.

GHZ’s proposed experiment, however, has a major
problem. How can one verify experimentally predictions
based on perfect correlations? This was also a problem
in Bell’s original paper. To “avoid Bell’s experimentally
unrealistic restrictions,” Clauser, Horne, Shimony, and
Holt [3] derived a new set of inequalities that would take
into account imperfections in the measurement process. A
main purpose of this Letter is to derive a set of inequali-
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ties for the experimentally realizable GHZ correlations.
We show that the following four inequalities are both
necessary and sufficient for the existence of a local
hidden variable, or, equivalently [4], a joint probability
distribution of A, B, C, and ABC, where A, B, C are
three 61 random variables.

22 # E�A� 1 E�B� 1 E�C� 2 E�ABC� # 2 , (1)

22 # 2E�A� 1 E�B� 1 E�C� 1 E�ABC� # 2 , (2)

22 # E�A� 2 E�B� 1 E�C� 1 E�ABC� # 2 , (3)

22 # E�A� 1 E�B� 2 E�C� 1 E�ABC� # 2 . (4)

For the necessity argument we assume there is a joint
probability distribution consisting of the eight atoms
abc, . . . , abc, where we use a notation where a is A � 1,
a is A � 21, and so on. Then, E�A� � P�a� 2 P�a�,
where P�a� � P�abc� 1 P�abc� 1 P�abc� 1 P�abc�,
and P�a� � P�abc� 1 P�abc� 1 P�abc� 1 P�abc�,
and similar equations hold for E�B� and E�C�. Next
we do a similar analysis of E�ABC� in terms of
the eight atoms. Corresponding to (1), we now sum
over the probability expressions for the expectations
F � E�A� 1 E�B� 1 E�C� 2 E�ABC�, and obtain

F � 2�P�abc� 1 P�abc� 1 P�abc� 1 P�abc��

2 2�P�abc� 1 P�abc� 1 P�abc� 1 P�abc�� .

Since all the probabilities are non-negative and sum to
#1, we infer (1) at once. The derivation of the other
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three inequalities is similar. To prove the converse,
i.e., that these inequalities imply the existence of a
joint probability distribution, is slightly more compli-
cated. We restrict ourselves to the symmetric case
P�a� � P�b� � P�c� � p, P�ABC � 1� � q and thus
E�A� � E�B� � E�C� � 2p 2 1, E�ABC� � 2q 2 1.
In this case, (1) can be written as 0 # 3p 2 q # 2, while
the other three inequalities yield just 0 # p 1 q # 2.
Let x � P�abc� � P�abc� � P�abc�, y � P�abc� �
P�abc� � P�abc�, z � P�abc�, and w � P�abc�. It is
easy to show that on the boundary 3p � q defined by
the inequalities, the values x � 0, y �

q
3 , z � 0, and

w � 1 2 q define a possible joint probability distribution,
since 3x 1 3y 1 z 1 w � 1. On the other boundary,

3p � q 1 2, a possible joint distribution is x � �12q�
3 ,

y � 0, z � q, and w � 0. Then, for any values of q
and p within the boundaries of the inequality we can
take a linear combination of these distributions with
weights 3p2q

2 and 1 2
3p2q

2 and obtain the joint proba-
bility distribution, x � �1 2

3p2q
2 � 12q

3 , y �
3p2q

2
q
3 ,

z � �1 2
3p2q

2 �q, w �
3p2q

2 �1 2 q�, which proves
that if the inequalities are satisfied a joint probability
distribution exists, and therefore a local hidden variable as
well. The generalization to the asymmetric case is tedious
but straightforward.

The correlations present in the GHZ state are so strong
that even if we allow for experimental errors, the nonex-
istence of a joint distribution can still be verified. Let
(i) E�A� � E�B� � E�C� $ 1 2 e, (ii) E�ABC� #

21 1 e, where e represents a decrease of the ob-
served correlations due to experimental errors. To see
this, let us compute the value of F defined above,
F � 3�1 2 e� 2 �21 1 e�. But the observed correla-
tions are compatible only with a local hidden variable
theory if F # 2, hence e ,

1
2 . Then, in the symmetric

case, there cannot exist a joint probability distribution of
A, B, and C satisfying (i) and (ii) if e , 1�2.

We will give an analysis of what happens to the corre-
lations when the detectors have efficiency d [ �0, 1� and
a probability g of detecting a dark photon within the win-
dow of observation when no real photon is detected. Our
analysis will be based on the experiment of Bouwmeester
et al. [5]. In their experiment, an ultraviolet pulse hits a
nonlinear crystal, and pairs of correlated photons are cre-
ated. There is also a small probability that two pairs are
created within a window of observation, making them in-
distinguishable. When this happens, by restricting to states
where only one photon is found on each output channel to
the detectors, we obtain the following state:

1
p

2
j1�T �j1�1j1�2j2�3 1 j2�1j2�2j1�3� ,

where the subscripts refer to the detectors and 1 and 2 to
the linear polarization of the photon. Hence, if a photon is
detected at the trigger T (located after a polarizing beam
794
splitter) the three-photon state at detectors D1, D2, and D3
is a GHZ-correlated state (see Fig. 1).

We will assume that double pairs created have the
expected GHZ correlation, and the probability negligible
of having triple pair productions or of having fourfold
coincidence registered when no photon is generated.
(Our analysis is different from that of Żukowski [6], who
considered only ideal detectors.) Two possibilities are
left: (i) a pair of photons is created at the parametric
downconverter; (ii) two pairs of photons are created. We
will denote by p1p2 the pair creation, and by p1 · · · p4 the
two-pair creation. We will assume that the probabilities
add to one, i.e., P�p1 · · · p4� 1 P�p1p2� � 1.

We start with two photons. p1p2 can reach any of
the following combinations of detectors: TD1, TD2, TD3,
D1D1, D1D2, D1D3, D2D2, D2D3, D3D3, TT . For an
event to be counted as being a GHZ state, all four de-
tectors must fire (this conditionalization is equivalent to
the enhancement hypothesis). We take as our set of ran-
dom variables T, D1, D2, D3 which take values 1 (if they
fire) or 0 (if they don’t fire). We will use t, d1, d2, d3
(t, d1, d2, d3) to represent the value 1 (0). We want to com-
pute P�td1d2d3 jp1p2�, the probability that all detectors
T , D1, D2, D3 fire simultaneously given that only a pair of
photons has been created at the crystal. We start with the
case when the two photons arrive at detectors T and D3.
Since the efficiency of the detectors is d, the probability
that both detectors detect the photons is d2, the probability
that only one detects is 2d�1 2 d�, and the probability that
none of them detect is �1 2 d�2. Taking g into account,
then the probability that all four detectors fire is

P�td1d2d3 jp1p2 � TD3�

� g2�d 1 g�1 2 d��2,

where p1p2 � TD3 represents the simultaneous (i.e.,
within a measurement window) arrival of the photons

D2

D1

T

UV Pulse

BS

3D

λ/2

Pol.

Pol.Crystal

FIG. 1. Scheme for the Innsbruck GHZ experiment. The GHZ
correlations are obtained when all detectors T , D1, D2, and D3
register a photon within the same window of time.
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at the trigger T and at D3. Similar computations
can be carried out for p1p2 � TD1, TD2, D1D3,
D1D2, D2D3. For p1p2 � DiDi the computation of
P�td1d2d3 jp1p2 � DiDi� is different. The probability
that exactly one of the photons is detected at Di is
d�1 2 d� and the probability that none of them is detected
is �1 2 d�2. Then, it is clear that

P�td1d2d3 jp1p2 � DiDi�

� d�1 2 d�g3 1 �1 2 d�2g4,

and we have at once that

P�td1d2d3 jp1p2� � 6g2�d 1 g�1 2 d��2

1 4g3�1 2 d� �d 1 g�.

We note that the events involving P�td1d2d3 jp1p2� have
no spin correlation, contrary to GHZ events.

We now turn to the case when four photons are cre-
ated. The probability that all four are detected is d4, that
three are detected is 4d3�1 2 d�, that two are detected is
6d2�1 2 d�2, that one is detected is 4d�1 2 d�3, and that
none is detected is �1 2 d�4. If all four are detected, we
have a true GHZ-correlated state detected. However, one
can again have four detections due to dark counts. We will
write p1 · · · p4 � GHZ to represent having the four GHZ
photons detected, and p1 · · · p4 � GHZ as having the four
detections as a non-GHZ state. We can write that

P�td1d2d3 jp1 · · · p4 � GHZ� � d4 1 g�1 2 d�d3

(5)
and

P�td1d2d3 jp1 · · · p4 � GHZ �

� 3gd3�1 2 d� 1 6g2d2�1 2 d�2

1 4g3d�1 2 d�3 1 g4�1 2 d�4.

The last term in (5) comes from the unique role of the
trigger T that needs to detect a photon but not necessarily
one that has a GHZ correlation.

How do the non-GHZ detections change the GHZ ex-
pectations? What is measured in the laboratory is the
conditional correlation E�S1S2S3 j td1d2d3�, where S1, S2,
and S3 are random variables with values 61, representing
the spin measurement at D1, D2, and D3, respectively. We
can write it as

E�S1S2S3 j td1d2d3�

�
E�S1S2S3 j td1d2d3, GHZ�P�GHZ�

P�GHZ� 1 P�GHZ�
,

since for non-GHZ states we expect a correlation

zero for the term E�S1S2S3 j td1d2d3, GHZ�P�GHZ�
P�GHZ�1P�GHZ� . Neglect-

ing terms of higher order than g2, using g ø d,
and P�p1p2� ¿ P�p1 · · · p4�, we obtain, from
P�GHZ� � 6P�p1p2�g2d2 1 3P�p1 · · · p4�g�1 2 d�d3

and P�GHZ� � P�p1 · · · p4� �d4 1 g�1 2 d�d3�, that

E�S1S2S3 j td1d2d3� �
E�S1S2S3 j td1d2d3, GHZ�

�1 1 6 P� p1p2�
P�p1···p4�

g2

d2 �
.

(6)

This value is the corrected expression for the conditional
correlations if we have detector efficiency taken into ac-
count. The product of the random variables S1S2S3 can
take only values 11 or 21. Then, if their expectation is
E�S1S2S3 j td1d2d3�. we have

P�S1S2S3 � 1 j td1d2d3� �
1 1 E�S1S2S3 j td1d2d3�

2
.

The variance s2 for a random variable that assumes only
1 or 21 values is 4P�1� �1 2 P�1��. Hence, in our case
we have as a variance

s2 � 1 2 �E�S1S2S3 j td1d2d3��2.

We will estimate the values of g and d to see how much
E�S1S2S3 j td1d2d3� would change due to experimental er-
rors. For that purpose, we will use typical rates of detectors
[7] for the frequency used at the Innsbruck experiment, as
well as their reported data [5]. First, modern detectors usu-
ally have d � 0.5 for the wavelengths used at Innsbruck.
We assume a dark-count rate of about 3 3 102 counts�s.
With a time window of coincidence measurement of 2 3

1029 s, we then have that the probability of a dark count in
this window is g � 6 3 1027. From [5] we use the fact
that the ratio P�p1p2��P�p1 · · · p2� is on the order of 1010.
Substituting these three numerical values in (6) we have
E�S1S2S3 j td1d2d3� � 0.9. From this expression it is clear
that the change in correlation imposed by the dark-count
rates is significant for the given parameters. However, it
is also clear that the value of the correlation is quite sensi-
tive to changes in the values of both g and d. We can now
compare the values we obtained with the ones observed
by Bouwmeester et al. for GHZ and GHZ states [5]. In
their case, they claim to have obtained a ratio of 1:12 be-
tween GHZ and GHZ states. In this case the correlations
are E�S1S2S3 j td1d2d3� � 0.92. It is clear that a detailed
analysis of the parameters would be necessary to fit the
experimental result to the predicted correlations that take
the inefficiencies into account, but at this point one can see
that values close to an experimentally measured 0.92 can
be obtained with appropriate choices of the parameters d
and g (see Fig. 2). This expected correlation also satisfies

E�S1S2S3 j td1d2d3� . 1 2
1
2

. (7)

This result is enough to prove the nonexistence of a joint
probability distribution. We should note that the standard
deviation in this case is

s �
q

�1 1 0.92� �1 2 0.92� � 0.39 . (8)
795
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FIG. 2. Contour plot of the correlation as a function of g and
d. The region where the correlation is 0.92 defines a region for
the parameters g and d that is compatible with the Innsbruck
results.

As a consequence, since 0.92 2 0.39 � 0.53, the result
0.92 is bounded away from the classical limit 0.5 by more
than 1 standard deviation (see Fig. 3).

We showed that the GHZ theorem can be reformulated
in a probabilistic way to include experimental inefficien-
cies. The set of four inequalities (1)–(4) sets lower bounds
for the correlations that would prove the nonexistence of
a local hidden-variable theory. Not surprisingly, detector
inefficiencies and dark-count rates can considerably
change the correlations. How do these results relate to
previous ones obtained in the large literature of detector
inefficiencies in experimental tests of local hidden-variable
theories. We start with Mermin’s paper [8], where an
inequality for F similar to ours but for the case of

FIG. 3. Number of s’s separating any observed correlation
and the critical boundary 0.5. The square represents the reported
correlation for the Innsbruck experiment, and the diamond rep-
resents the expected correlation if the dark count is reduced to
50 counts�s.
796
n-correlated particles is derived. Mermin does not de-
rive a minimum correlation for GHZ’s original setup
that would imply the nonexistence of a hidden-variable
theory, as his main interest was to show that the quantum
mechanical results diverge exponentially from a local
hidden-variable theory if the number of entangled par-
ticles increase. Braunstein and Mann [9] take Mermin’s
results and estimate possible experimental errors that
were not considered here. They conclude that for a given
efficiency of detectors the noise grows slower than the
strong quantum mechanical correlations. Reid and Munro
[10] obtained an inequality similar to our first one, but
there are sets of expectations that satisfy their inequality
and still do not have a joint probability distribution.
In fact, as we mentioned earlier, our complete set of
inequalities is a necessary and sufficient condition to have
a joint probability distribution.

We have used an enhancement hypothesis, namely, that
we counted only events with all four simultaneous detec-
tions, and showed that with the coincidence constraint a
joint probability did not exist in the Innsbruck experiment.
Enhancement hypotheses have to be used when detector
efficiencies are low, but they may lead to loopholes in the
arguments about the nonexistence of local hidden-variable
theories. Loophole-free requirements for detector ineffi-
ciencies are based on the analysis of [11] for the Bell case
and for [12] for the GHZ experiment without enhancement.
However, in the Innsbruck setup enhancement is neces-
sary, as the ratio of pair to two-pair production is of the
order of 1010 [5]. Until experimental methods are found
to eliminate the use of enhancement in GHZ experiments,
no loophole-free results seem possible.

Figure 3 shows the number of standard deviations, as
computed above, by which the existence of a joint distri-
bution is violated. We can see that if we change the experi-
ment such that we reduce the dark-count rate to 50 per s,
instead of the assumed 300, a large improvement in the ex-
perimental result would be expected. Detectors with this
dark-count rate and the assumed efficiency are available
[7]. We emphasize that there are other possible experimen-
tal manipulations that would increase the observed corre-
lation, e.g., the ratio P�p1p2��P�p1 · · · p2�, but we cannot
enter into such details here. The point to hold in mind is
that Fig. 3 provides an analysis that can absorb any such
changes or other sources of error, not just the dark-count
rate, to give a measure of reliability.
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