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Quantum and Classical Game Strategies

A recent paper [1] discusses how quantum mechanics
affects game theory, with the conclusion that for certain
games a suitable quantum strategy is able to beat any
classical strategy. That conclusion is correct. Quantum-
mechanical protocols are known to be superior to classical
protocols both in solving certain computational tasks and
for cryptographic purposes, both of which can be reformu-
lated in terms of games [1]. The aim of this Comment,
however, is to point out that the particular example pre-
sented in [1] to prove that quantum strategies are superior
to classical strategies is flawed. There is nothing quantum
mechanical about that strategy because it can be imple-
mented classically, as will be shown below. Moreover, the
example shows only that a player using a restricted set of
strategies can be beaten by a player who uses an extended
set of strategies. But this is unsurprising.

The game is penny flipping, where player P places a
penny head up in a box, after which player Q, then player
P, and finally player Q again, can choose to flip the coin
or not, but without being able to see it. If the coin ends
up being head up, player Q wins, else player P wins. The
winning (or cheating, depending upon one’s perspective)
quantum strategy of Q now consists of putting the penny
into a superposition of head up and down. Since player P
is allowed to interchange only up and down he is obviously
not able to change that superposition, so that Q wins the
game by rotating the penny back to its initial state.

It is easy to see why Q’s “quantum” strategy, when ap-
plied to a two-state quantum system, can be implemented
classically. First of all, one implementation of the game
could make use of photon polarization, with, for example,
the right- and left-hand circular polarizations correspond-
ing to heads and tails, according to
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In spite of the use of the word photon, this experiment
can just as well be performed with classical light. It just
so happens that classical transformations of the polariza-
tion vector can be represented by unitary operators. For
instance, imagine that flipping the coin is implemented by
sending the light through a birefringent medium that shifts
the phase of the y component of the polarization vector
by p , while leaving the x component unchanged. Then it
is clear that player Q indeed wins by changing the polar-
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ization state into a superposition of the two circular polar-
izations, as this just means polarizing the light in the �ex

direction, which will be unaffected by P’s action.
More poignantly, a similar strategy can be devised for

a classical penny. Flipping the penny can be implemented
by rotating the penny around a fixed axis in the horizontal
plane on which the coin is initially lying. Player Q can
now win (or cheat, depending upon one’s perspective) by
putting the penny on its edge with its plane normal to the
rotation axis. The fact that the orientation of the coin might
have changed in the end is an artifact of a penny having
more degrees of freedom than are relevant for the game.

Finally, and perhaps most importantly, there is a very
good reason why a game with a single qubit does not
show any improvement of quantum strategies over clas-
sical strategies. A single qubit is not a truly quantum
system in the sense that its dynamics and its response to
measurements can all be mocked up by a classical hid-
den-variable model. There are no Bell inequalities [2] or a
Kochen-Specker theorem [3] for a two-dimensional system
that forbids the existence of a classical model. In fact, such
a model can be constructed explicitly [4]. Of course, this
does not mean that every quantum system can be mimicked
classically. But the fact that more complicated games, in-
volving more than a single qubit, are hard or even impos-
sible to implement classically does not take away from
the fact that Meyer’s particular example is incorrect. In
fact, countering the present objection by pointing out that
it would have failed for larger systems is not unlike saying
after a lost game of chess: “But if we would have played
on a larger board, I would have won.”

I thank Chris Fuchs for useful discussions. This work
was funded by DARPA through the QUIC (Quantum In-
formation and Computing) program administered by the
U.S. Army Research office, the National Science Founda-
tion, and the Office of Naval Research.

S. J. van Enk
Norman Bridge Laboratory of Physics
California Institute of Technology 12-33
Pasadena, California 91125

Received 1 February 1999
PACS numbers: 03.67.–a, 02.50.Le, 03.65.–w, 89.80.+h

[1] D. Meyer, Phys. Rev. Lett. 82, 1052 (1999).
[2] J. S. Bell, Rev. Mod. Phys. 38, 447 (1966).
[3] S. Kochen and E. P. Specker, J. Math. Mech. 17, 59 (1967).
[4] J. F. Clauser, Am. J. Phys. 39, 1095 (1971).
2000 The American Physical Society 789


