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Magnetotransport in Manganites and the Role of Quantal Phases: Theory and Experiment
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While low-temperature Hall resisitivity rxy of La2�3�Ca,Pb�1�3MnO3 single crystals can be separated
into ordinary (OHE) and anomalous (AHE) contributions, no such decomposition is possible near the
Curie temperature Tc. Rather, the rxy data collapse to a single function of the reduced magnetization
m � M�Msat, with an extremum at �0.4m. A new mechanism for the AHE in the inelastic hopping
regime is identified that reproduces the scaling curve. An extension of Holstein’s model for the hopping
OHE, the mechanism arises from the combined effects of the double-exchange-induced quantal phase in
triads of Mn ions and spin-orbit interactions.

PACS numbers: 75.30.Vn, 72.20.My, 71.38.+ i
Along with the so-called colossal magnetoresistance
(CMR) effect, doped perovskite manganites exhibit
dramatic variations in the Hall resistivity rxy [1–6] near
the metal-insulator transition at Tc. In the metallic, low
temperature regime, the Hall effect can be reconciled with
a positive ordinary Hall effect (OHE) and an anomalous
Hall effect (AHE) of opposite sign [5]. However, near
Tc, all signatures of the metallic OHE are lost, and the
Hall effect becomes a double-valued function of applied
field H. In the same region, the longitudinal resistivity
rxx exceeds the Mott limit, and is better described by
hopping conduction. The study of the OHE in the hopping
regime has a long history beginning with the work of
Holstein [7], who realized that the OHE in hopping
conductors requires considering at least triads of sites
and the attendant Aharonov-Bohm (AB) fluxes through
polygons with vertices on those sites. However, how to
average over all triads and conducting network structure
in disordered systems remains controversial [8,9].

In this Letter, we present new Hall resistivity data on
optimally doped manganite single crystals, with emphasis
on the regime close to Tc. We demonstrate that the rxy

data collapse to a single curve when plotted as a func-
tion of reduced magnetization. Moreover, we show for
the first time that the quantal phase accumulated by hop-
ping charge carriers, a result of the strong-Hund’s-rule
requirement that outer-shell carriers follow the local con-
figuration of core spins, provides a new AHE mecha-
nism in the inelastic hopping regime. The possibility that
Hund’s-rule-induced Berry phase [10] contributions can,
in the presence of spin-orbit interactions (SOI), lead to
AHE in the metallic, band-conductivity regime was first
suggested by Kim et al. [11]. Here we consider inelas-
tic hopping, relevant to the transition region, and the dis-
crete analog of Berry’s phase, appropriately called the
Pancharatnam phase [12,13]. By including the effects of
SOI, we derive a scaling function for rxy that closely fol-
lows the collapsed experimental data.

High quality single crystals of La2�3�Ca,Pb�1�3MnO3
were grown from 50�50 PbF2�PbO flux. It was found
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that the addition of Ca favors optimally doped crystals;
chemical analyses of crystals from the same batch gave the
actual composition as La0.66�Ca0.33Pb0.67�0.34MnO3. Spec-
imens for the Hall measurements were cut along crys-
talline axes from larger, preoriented crystals. Details of
the measurement technique and analysis at low T have
been presented in [5]. rxy and rxx were measured simul-
taneously as functions of H and T . The magnetization of
the same sample, measured following the Hall experiment,
was used to correct for demagnetization. Figure 1 shows
rxx�T � at H � 0, 3, and 7 T. Magnetization curves are
shown in the inset. The residual resistivity of this sample,
r0

xx � 51 mV cm, is comparable to the best values ob-
tainable in these materials. The maximum of drxx�dT
occurs at 287.5 K and H � 0 T, moving to higher T with
increasing H. The CMR is 326% at 293 K and 7 T. A

FIG. 1. Main panel: the temperature dependence of rxx�H, T�
of a La2�3�Pb,Ca�1�3MnO3 single crystal at various H. Inset:
MH �T� for the same crystal.
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scaling analysis of the magnetization data very close to
the metal-insulator transition gives Tc � 285 K, but this
must be taken cautiously as the scaling exponents differ
significantly from those expected from a 3D Heisenberg
ferromagnet. Nevertheless, it is clear that rxx and M are
closely correlated in this system. In ferromagnets, the Hall
resistivity is given by [14]

rxy � RHBin 1 RSm0M , (1)

where RH is the OHE coefficient; RS is the AHE coeffi-
cient; Bin � m0Happ 1 m0�1 2 N�M, with N calculated
from the sample shape. In Fig. 2, we show rxy vs Bin at
various T. At low T, rxy is positive and is linear in Bin, in-
dicating that RS is small. In this metallic regime the OHE
arises from the Lorentz force acting on current carriers and
the AHE originates from spin-orbit effects (skew scatter-
ing and side jumps); see, e.g., [15]. With increasing T ,
the AHE becomes very large and difficult to analyze near
Tc, leading us to seek a different mechanism. An alterna-
tive has been proposed [11] for the metallic state, arising
from nontrivial spin configurations in manganites, but is
not relevant to the transitional region. From Fig. 1, we see
that the CMR sets in when rxx exceeds 1 mV cm. Using a
standard Drude-type picture we find that band broadening
h̄�t at such rxx is approximately 0.65 eV, i.e., significantly
larger than the bandwidth and the Fermi energy. The re-
sistivity, therefore, exceeds the Mott-Ioffe-Regel limit for
metallic conductivity and makes bandlike transport mod-
els inappropriate. In contrast, an estimate based on a
hopping conductivity model in which localized electrons
move between ion sites gives a reasonable estimate of
the characteristic attempt frequency of inelastic hopping
W � 3 3 1013 s21.
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FIG. 2. rT
xy�H� of the same crystal at various temperatures.
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The picture of localized states in manganites in the vicin-
ity of the transition has been discussed by Varma [16]
and Sheng et al. [17]. Two types of disorder, intrinsically
present in this system, contribute to localization. Magnetic
(spin) disorder is Lifshitz type [18] off-diagonal disorder.
It is long lived and leads to localized states in the electronic
band tail. In addition, the manganites are characterized
by substantial static nonmagnetic disorder from the ran-
dom substitution of La ions by dopant ions. This diagonal,
Anderson-type disorder facilitates localization of carriers
[17]. We therefore assume that it is reasonable to consider
phonon-assisted hopping between localized states as the
mechanism of electron transfer in the transitional region
[19]. Then rxx can be described in terms of Miller-Abra-
hams resistive network [21,22], in which each resistance
of the network is determined by an Anderson-Hasegawa
factor in the transfer amplitude cosu�2, where u is the
angle between core spins (assumed classical) on a pair of
Mn sites [23].

To treat the AHE we require more than a pair of sites
and, ignoring any AB fluxes (as we shall not be concerned
with OHE), consider spin quantal phases in triads of mag-
netic ions. These quantal phases are geometric in origin
[10]. Indeed, assigning a definite direction ni to each core
spin-3�2 in the triad, and allowing each outer-shell current
carrier a single spin state per site (as required by Hund’s
rules), we find that a quantal phase

V�2 � tan21

∑
n1 ? �n2 3 n3�

�1 1 n1 ? n2 1 n2 ? n3 1 n3 ? n1�

∏

arises. This phase controls interference between a direct
hop between two sites in the triad and indirect hops be-
tween those two sites via the third. V is the solid angle of
the geodesic triangle on the unit sphere of spin orientations
having vertices at �n1, n2, n3�, and is the quantal analog of
the classical optical phase discovered in the context of po-
larized light by Pancharatnam [12,13,24]. In the hopping
regime, the Pancharatnam phase leads to an AHE in an el-
ementary triad with a given set of core-spin orientations in
much the same way that an AB flux leads to the OHE in
Holstein’s spinless model [7].

There is, however, a significant difference between the
AHE caused by the Pancharatnam spin phase in triads of
magnetic ions and the Holstein OHE resulting from the AB
magnetic flux. In the latter case, a uniform applied mag-
netic field leads to a net macroscopic OHE, even though
contributions of triads may partially cancel one another [8].
In the former case (magnetic sites, Pancharatnam flux), if
no SOI is taken into account, the presence of macroscopic
magnetization of the core spins is insufficient to cause a
macroscopic AHE. The reason is that we must average
over the configurations of the core spins. In the absence
of SOI, the distribution of these configurations, although
favoring a preferred direction (i.e., the magnetization di-
rection m � M�M), is invariant under a reflection of all
core-spin vectors in any plane containing M while the sign
of the quantal phase reverses. This fact, coupled with the



VOLUME 84, NUMBER 4 P H Y S I C A L R E V I E W L E T T E R S 24 JANUARY 2000
invariance of electron eigenstates under such reflections,
guarantees that the macroscopic AHE current will average
to zero.

In order to capture the AHE in manganites, we must
consider spin-orbit interactions, which lift the reflection
invariance of the outer-shell carrier energies and the distri-
bution of core-spin configurations. For a given core-spin
configuration, SOI favors one sense of carrier circulation
around the triad over the other, and thus favors one sign of
the Pancharatnam phase. There are two resulting contribu-
tions to the AHE. The first arises from the SOI-generated
dependence of eigenenergies of carriers on triads of ions
on the three vector products Njk � nj 3 nk which has
Dzyaloshinski-Moriya (DM) form [25]. Such dependence
results from the SOI effect on the hopping matrix element t
between Mn ions, which is a real number and spin indepen-
dent in the double-exchange model, but acquires a phase
and spin dependence in the presence of SOI. For a hole
on a triad [24], t � t0�1 1 igs ? Q�Q�, where t0 is the
matrix element in the absence of SOI, and Q is the vector
area of a triad. When Hund’s rule is taken into account,
DM terms Nij ? Q�Q appear in hole eigenenergies. To-
gether with m, the Njk yield preferred values for the triad
Pontryagin charge qP [� n1 ? �n2 3 n3�] and, hence, a
preferred Pancharatnam flux �M ? Q. Another contribu-
tion arises via a feedback effect in which (fast) carriers
provide an effective potential for the (slow) spin system,
causing unequal equilibrium probabilities of spin config-
urations having opposite Pancharatnam fluxes. (Thus, in
the first contribution one accounts for SOI in the carrier
eigenenergies, which affects the carrier hopping probabili-
ties for a given spin configuration, while in the second the
SOI affect only the probability of a given spin configura-
tion.) Thus, qP and DM terms, acting together, result in a
flux of magnetization through the triad M ? Q, giving rise
to the AHE in the same way as the AB flux H ? Q results
in the OHE for localized carriers in [7–9].

We assume that transport in the transition region is
dominated by hopping processes, giving rise to a longitudi-
nal conductivity sxx � �ne2d2�kBT �W0 cos2�u�2�, where
d is the distance between ions. Here W0 is the probability
of (single) phonon-assisted direct hops and we have ex-
plicitly separated Anderson-Hasegawa factors cos2�u�2�.
The AHE conductivity, correspondingly, is given by sxy �
�ne2d2�kBT �W1, where W1 is the probability of hopping
between two ions via an intermediate state on a third ion,
and includes Anderson-Hasegawa factors. We now deter-
mine the ratio between direct and indirect hopping rates as
a function of the spin texture. Because W1 involves two-
phonon processes, we write W1�W2

0 � ah̄z�kBT , where
a is a numerical factor describing the multiplicity of the
various carrier-phonon interference processes (see [7]), the
number of intermediate sites, and the difference between
nearest-neighbor and next-nearest-neighbor hopping am-
plitudes, with z as an asymmetry parameter. For the OHE,
z ~ sin�B ? Q�f0� , where Q is the area vector of the
triangle enclosed by the three sites. In the AHE case
z 	 3qPg
Q ? �nj 3 nk���4 [24], where nj are unit vec-
tors of the core spins in the triad, and qP is the volume of
a parallelepiped defined by core-spin vectors. The AHE
resistivity is given by

rxy 	 2sxy�s2
xx � 2

1
ne

µ
ah̄z

ed2

1
cos4�u�2�

∂
. (2)

The evaluation of Eq. (2) reduces to a determination of
cos�u�2� and products �nj 3 nk� and qP that survive av-
eraging over triads. In contrast to the hopping OHE in
doped semiconductors [8], where only two sites in an op-
timal OHE triad are connected to the conducting network
(CN), all three triad sites must participate in the CN if
they are to contribute to the AHE. Our argument is that
if one of the sites is not a part of the CN then its core
spin must be roughly opposite that of the other two spins,
yielding a vanishingly small qP . It is reasonable then to
assume that the CN is formed by ions with splayed core
spins oriented roughly in the direction of average magne-
tization m. We then consider the square lattice formed by
Mn ions in planes perpendicular to m, and assume that the
core spins of the four ions in a typical elementary pla-
quette belonging to CN lie equally spaced on the cone
whose half angle is given by b � cos21
M�H, T ��Msat�.
A typical pair of ions that determines the longitudinal cur-
rent and a typical triad can now be chosen from ions of
this plaquette. From elementary geometry, it follows that
2 cos2�u�2� � 1 1 cos2b, qP � 2 cosb sin2b, and m ?

�nj 3 nk� � sin2b. To find the AHE magnitude, we esti-
mate the characteristic values of jgj � g � Ze2�4mec2d0,
where d0 is the radius of an Mn core d state. An esti-
mate based on free electron parameters is reasonable (see
[24]) and gives g � 5 3 1024. Then, the magnitude of
the DM term �gt0 � 0.02 meV, and is much smaller than
the magnitude of the Heisenberg exchange term. However,
for the AHE in localization regime DM terms are crucial.
The magnitude of rxx and rxy in the regime of abrupt in-
crease of rxx depends not only on properties of individual
pairs (triads), but also on how they are connected to the
CN. In the low temperature limit of our model, where the
CN is still fully connected, taking n � 5.6 3 1021 cm23,
W0 � 2.5 3 1013 s21, and cosb � 0.6 from the magne-
tization data at T � 275 K (Fig. 1), we obtain rxx 	
1 mV cm which coincides with the value of the experimen-
tally observed rxx (Fig. 1). The AHE contribution to rxy ,
assuming a � 2.5, is then rxy � 20.5 mV cm, in agree-
ment with the experimentally observed rxy at the same T
(Fig. 2). The equivalent expression for the hopping OHE
has z 	 cos2�u�2� cosb sin�B ? Q�f0� and, at B � 1 T,
is an order of magnitude smaller than the AHE. We expect
the macroscopic hopping AHE and OHE to have the same
sign, opposite that of the OHE in the metallic regime.

To relate rxy to m � jmj, we introduce a percolation
factor P for sxx describing the connectivity of the pair to
the CN; for the AHE conductivity the corresponding fac-
tor would be P2 because both pairs in a triad must, as
759
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FIG. 3. Scaling behavior between rxy and the sample magne-
tization M. The solid line is a fit to Eq. (3); the dashed line is
the numerator of Eq. (3) only. There are no fitting parameters
except normalization.

discussed above, belong to the CN. It is remarkable that
throughout the localization regime, rxy is, nevertheless,
determined by currents formed in individual pairs and tri-
ads, because the factors of P cancel. Therefore, as long
as qP and the angles between neighboring spins can be di-
rectly related to m � M�Msat � cosb, rxy depends on H
and T only through m�H, T �, and is given by

rxy � r0
xym�1 2 m2�2��1 1 m2�2. (3)

The corresponding curve is shown in Fig. 3, where the data
of Fig. 2 are replotted as a function of M�Msat. At and
above Tc the data fall on a smooth curve that reaches an ex-
tremum at M�Msat 	 0.4. Below Tc the data first change
rapidly with M as domains are swept from the sample be-
fore saturating and following the general trend. At the low-
est temperatures, the metallic OHE appears as a positive
contribution at constant magnetization. The solid curve in
Fig. 3 follows Eq. (3) with r0

xy � 24.7 mV cm, consis-
tent with the estimates of rxx and rxy given above. Down
to 285 K, which is the Tc determined by the scaling analy-
sis, Eq. (2) describes the data reasonably well. In addition,
the extremum is located at M�Msat � cosb � 0.35, close
to the experimental extremum. Below Tc, rxx is metal-
lic and no longer dominated by magnetic disorder. How-
ever, local spin arrangements are still manifested in the
AHE, e.g., via asymmetric scattering. Then the numera-
tor of Eq. (3), m�1 2 m2�2, is essentially the behavior of
sxy alone and has an extremum at m � 1�

p
5 � 0.45 as

shown by the dashed line in Fig. 3. The broader maximum
in the data suggests a shift toward a hopping model for rxx

and rxy as the sample is warmed through the metal-insu-
lator transition.

In conclusion, we find that the Hall resistivity of a
La2�3�Ca,Pb�1�3MnO3 single crystal is solely determined
by the sample magnetization near and somewhat above
the transition temperature. A model for the AHE, based
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on the Holstein picture in which interference between di-
rect inelastic hops and those via a third site is sensitive to
the quantal phase, explains the results quite well. Unlike
the Holstein Hall effect in the presence of Aharonov-Bohm
flux, the anomalous Hall effect stems from quantal phase
due to the strong-Hund’s-rule coupling that forces the hop-
ping charge carrier to follow the local spin texture, and
from spin-orbit interactions. It is the strength of the Hund’s
coupling that enables effects due to quantal spin phases
to persist at and above room temperature. Below Tc, the
AHE competes with the OHE as long-range magnetic or-
der, and presumably an infinite percolating cluster and
metallic conductivity develop.
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