VOLUME 84, NUMBER 4

PHYSICAL REVIEW LETTERS

24 JANUARY 2000

Order Out of Disorder in a Gas of Elastic Quantum Stringsin 2 + 1 Dimensions
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A limiting case of adynamical stripe state which is of potential significance to cuprate superconductors
is considered: a gas of elastic quantum stringsin 2 + 1 dimensions, interacting merely via a hard-core
condition. It is demonstrated that this gas aways solidifies, by a mechanism which is the quantum analog
of the entropic interactions known from soft condensed matter physics.

PACS numbers: 75.10.—b, 64.60.—i, 71.27.+a, 74.72.—-h

The analysis of systems of quantum particles has been
traditionally the focus point of quantum many body theory.
On the other hand, much less is known about systems
composed of extended objects. Here | will analyze one of
the simplest examples of such a system: a gas of quantum
strings with finite line tension, embedded in (2 + 1)-
dimensiona space-time. A motivation to study this
problem is found in the context of the cuprate stripes [1].
It is popular to view these stripes as preformed linelike
textures which can either order in a regular pattern or stay
in a disordered state due to strong quantum fluctuations.
The question arises whether it is possible to quantum
melt a system of completely intact, infinitely long stripes.
Even in this limit the stripes themselves can still execute
guantum meandering motions and a consensus has been
growing that a single stripe is similar to a quantum string
with finite line tension [2—6]. | define the ideal string gas
as the low density limit where the width of the strings
can be neglected, while the strings interact only via
the requirement that they cannot intersect [7]. This is
obvioudly the limit where quantum kinetic energy is most
important. | will show that in 2 + 1 dimensions even
in this limit this string system turns into a solid at zero
temperature. This solidification is driven by the quantum-
mechanical analog of the entropic interactions known from
statistical mechanics. In a system with steric interactions
between its constituents, entropy is paid at collisions
in the classical system and kinetic energy in the quantum
system. This causes an effective repulsion and these
“quantum entropic” interactions dominate to such an ex-
tent in the string gas that they cause it to solidify always.

In the path-integral representation, a quantum-mechani-
cal problem of interacting particles becomes equivalent
to a statistical physics problem of interacting elastic lines
(“world lines”). Likewise, the quantum string gas becomes
equivaent to the statistical physics problem of a stack of
elastic membranes (“world sheets’) which do not inter-
act except for the requirement that the membranes do not
intersect. A seminal contribution in the study of entropic
interactions in classical systems composed of extended
entities is the analysis by Helfrich [8] of a system of ex-
trinsic curvature membranes in 3D, interacting only viaan
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excluded volume constraint. | will illustrate this method in
the quantum context by analyzing the hard-core Bose gas
in (1 + 1)D, which is closely related to Helfrich’s extrin-
sic curvature membranes in 3D. The string gas will turn
out to be a straightforward, but nontrivial, extension of the
Bose gas. different from the latter, the quantum entropic
interactions of the string gas are driven by long wavelength
fluctuations.

To acquire some insights in the Helfrich method
in the context of quantum mechanics, consider the
familiar problem of hard-core (but otherwise noninter-
acting) bosons in (1 + 1)D. This is solved by mapping
onto a noninteracting spinless-fermion gas. Although
mathematically trivial, this problem does exhibit the
conceptual ambiguity associated with Luttinger liquids
[9]. On the one hand, it is clearly a gas of particles
characterized by akinetic scale Er, while at the same time
the long-wavelength density-density correlator exhibits
the algebraic decay characteristic for a harmonic crystal
in (1 + 1)D: (n(x)n(0)) ~ cos(2krx)/x>. The concept
of entropic interaction offers a simple explanation.

The hard-core Bose gas at zero temperature corresponds
with the statistical physics problem of a gas of nonin-
tersecting elastic lines embedded in 2D space-time [10],
which are directed along the time direction. The space-like
displacement of the ith world lineis parametrized in terms
of afield ¢;(v) (7 is imaginary time) and the partition
function is

Z= Hﬁvzll_[.,/ d(]ﬁi(T)e_(S/h),

_ M \2
S - f dT Zl: 2 (aT ¢l) )
supplemented by the avoidance condition,

b1 < ¢y < < ¢y ¥

The hard-core condition Eg. (2) rendersthisto be a highly
nontrivial problem. Helfrich considered the related clas-
sical problem of a stack of linearized and directed extrin-
sic curvature membranes embedded in 3D space. Although
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this is a higher dimensional problem, the action depends
on double derivatives instead of the single derivatives in
Eq. (1), (9.¢)* — (97, #)%, and it follows from power-
counting that this problem is equivalent to the hard-core
Bose gas in the present context. In order to determine
the “entropic” elastic modulus at long wavelength Helfrich
introduced the following construction. Assume that the
long-wavelength modulus By is finite. For the Bose gas
this implies that the long-wavelength action is that of a
(1 + 1)D harmonic solid:

St = 3 f dr f dxlp (@, + Bo(yP]. (3

where (x, 7) is a coarse grained long-wavelength dis-
placement field, p = M/d is the mass density, and d is
the average inter-world-line distance (n = 1/d isthe den-
sity). Obvioudly, for finite By fluctuations are suppressed
relative to the case that B vanishes and this cost of kinetic
energy in the quantum problem (entropy in the classica
problem) raises the free energy. Define this “free-energy
of membrane joining” as

AF(By) = F(Bg) — F(By = 0). 4)

At the same time, by general principle it has to be that
the “true” long-wavelength modulus B in the x direction
should satisfy (V is the volume)
5, 3[AF(By)/V]

B=d o . (5)
In case of the steric interactions, the only source of long-
wavelength rigidity in the space direction is the fluctuation
contribution to AF. This means that B) = B and B can
be self-consistently determined from the differential equa-
tion [Eq. (5)]. Infact, the only ambiguity in this procedure
is the choice for the short distance cutoff for the fluctua
tions in the x direction, which is expected to be propor-
tional to the distance between the world lines, xnin = nd.
The shortcoming of the method is that mode couplings are
completely neglected and thisis not quite correct since the
outcomes do depend crucially on short-wavelength fluc-
tuations. However, it appears [11] that these effects can
be absorbed in the nonuniversal “fudge factor” », giving
rise to changes in numerical prefactors without affecting
the dependence of B on the dimensionful quantities in the
problem.

The free energy difference for the Bose gas [Eq. (4)] is
easily computed from the Gaussian action [Eg. (3)] and
expanding up to leading order in A = (\/ETO)/(\/ﬁd) (7o
isthe cutoff time), becoming small in the low density limit,

AF _mh [B 1o,

v e Md3/2+0(/\). (6)

Inserting Eq. (6) on the right-hand side of the self-consis-

tency eguation [EqQ. (5)] and solving the differential equa-
tion up to leading order in A yields
972 h?

= T v ™

n* Md
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It is easily checked that this corresponds with the elas-
ticity modulus appearing in the bosonized action of the
hard-core boson problem, taking n = /6. Hence, the
spacelike rigidity of the Bose gas at long wavelength can
be understood as a consequence of entropic interactions
living in Euclidean space-time.

Let us now turn to the string-gas problem. In fact, the
string gasin (2 + 1)D isrelated to the hard-core Bose gas
in (1 + 1)D: the latter can be viewed as the compactified
version of the former. Imagine that the hard-core Bose gas
lives actually in (2 + 1)D where the additional dimension
y isrolled up to a cylinder with a compactification radius
R, of order of the lattice constant a, while the bosons are
spread out in elastic strings wrapped around the y axis.
Let R, go to infinite. This has the effect that the embed-
ding space becomes (2 + 1)-dimensional, while the boson
world lines spread out in string world sheets. This “di-
rected string-gas’ is not yet the one of interest, since the
world sheets are not directed only along theimaginary time
directions (as required by quantum mechanics) but aso in
the x-y plane (Fig. 18). The difficulty is that in the string
gas dislocations can occur (Fig. 1b), and if these prolifer-
ate they will destroy the generic long range order of the
directed string gas. However, two objections can be raised
against a dislocation mediated quantum melting. The first
objection involves a further specification: already a single
string tends to acquire spontaneously a direction, if it is
regularized on alattice (like the stripes). As pointed out by
Eskes et al. [2], the reason is that “overhangs’ such asin
Fig. 1b are events where transversal fluctuations are sur-
pressed, relative to those around directed configurations.
The second argument is more general. It isaclassic result
[7,12] that at any finite temperature dislocations prolifer-
ate in the string gas. However, in the presence of a finite
range interaction of any strength the Kosterlitz-Thouless
transition will occur at afinite temperature. Hence, by let-
ting this interaction to become arbitrarily weak, a7 = 0
transition can be always circumvented.

When dislocations can be excluded the directed string
gas remains and this is just the decompactified Bose gas.

<« d—,

(a) (®)

FIG. 1. A typica spacelike configuration in the directed string
gas (a), including a collision of the type driving the quantum-
entropic interactions. In the string gas dislocations (b) do not
proliferate, and it is therefore equivalent to the directed gas.
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In Euclidean space-time it corresponds with a sequentially
ordered stack of elastic membranes. Orienting the world
sheets in the y, 7 planes, the action becomes in terms of
the displacement fields ¢;( y, 7) describing the motion of
the strings in the x direction:

Z =110, f di(y,m)e” /P,
s (8
S = j dr dy z[%(aﬂﬁiﬁ + 7"(8},@)2},

again supplemented by the avoidance condition [Eg. (2)].
In Eq. (8), p. isthe mass density and 2. isthe string ten-
sion, such that ¢ = /2./p. isthevelocity. In the remain-
der | choose alattice regularization with lattice constant a,
such that the average string-string distanceisd = a/n (n
isthe density), and UV momenta and frequency cutoffs on
asingle string g0 = 7/a and wy = cqo, respectively.

Turning to the Helfrich method, the effective long-wave-
length action is written as

1
Setr = f drdx dy[p(d,¢)* + B(a,¢)*

+ 2(8,9)°], 9)

with ¢(x, y, 7) as the coarse grained long-wavelength dis-
placement field, while 3 = 3./d, p = p./d, and B has
to be determined. From the action Eq. (9) it follows that
the free energy difference Eq. (4) is

q0 7/(nd) 2

A_F — _E dqu dqx|n|:27q:|'
v 872 Jo 0 2q* + Bg?

(10

Thisintegral is easily solved analytically and expanding in
the small parameter A = (v/Ba)/(V2nd),

S mhe (8)(5 TS o
v _24n3zc<d2><3 +|n[ e B} oY,
(11

The free-energy difference is proportional to B/d* except
for a logarithmic “correction” ~(B/d?)In(d/B). Since B
tends to zero in the low density limit, it is actualy this
logarithmic correction which determines the low density
asymptote of the differential equation which is obtained
after substition of Eq. (11) in the self-consistency condi-
tion Eq. (5). The physical meaning of this logarithm will
be discussed later.

The differential equation determining the fluctuation in-
duced modulus B becomes

& [ () IN[Cydf(d)] + 5} 12
052 fd)InlCidf 3| (12)

where f(d) = B/d* and Cy = (whic)/(24933,),C; =
a’/(n*2.). Equation (12) can be simplified using the
ansatz f(d) = exp[—P(d)]. Itiseasy to see that for large
d the second derivative terms ~a5® can be neglected

fld)=-cC

relatively to the first derivative terms (“quasiclassical
approximation”). Neglecting the other terms which do
not contribute in the low density asymptote [including the
one derived from the “5/3" term in Eq. (12)] ® obeys
asymptotically the simple differential equation,

ab\ 1
b -2)—) = — 1
@-2(57) - & (13
and it follows that ®(d) ~ d%/. The full expression for
the induced modulus is up to leading order in the density,

B = Ad?e /™1 (14)

where A is an integration constant and w is the “coupling
constant” for the string gas,

_h
pcd?’

Equations (14) and (15) represent my central resullt.
What is the significance of this result? Most impor-
tantly, it demonstrates that in parallel with the hard-core
Bose gas (and Helfrich’s membranes), the string gas is
characterized by a fluctuation induced elastic modulus at
long wavelength which will be small but finite even at low
density. This modulus B appears in the action Eg. (9)
which describes an elastic manifold covering (2 + 1)D
space-time. Equation (14) describes the counterintuitive
fact that, upon increasing the kinetic energy of a single
string, the rigidity of this medium is actualy increasing.
The parameter wu is the dimensionless quantity measur-
ing the importance of quantum fluctuations [13]. In or-
der to prohibit diverging fluctuations on the lattice scale,
w should be less than one, while the classical limit is ap-
proached when u — 0. According to Eq. (14), B depends
on w inastretched exponential form, such that B increases
when w isincreasing. Since quantum dislocation melting
is prohibited, the string gasis always a solid, and this solid
becomes more rigid when the microscopic quantum fluc-
tuations become more important. This might appear as
less surprising when the (directed) string gas is viewed as
a decompactified Bose gas. On the one hand, the larger
internal dimensionality of the world sheets as compared
to the world lines weakens the “quantum-entropic” inter-
actions, but the enlarged overall dimensionality causes the
algebraic long range order of the (1 + 1)D Bose gasto be-
come the true long range order of the (2 + 1)D string gas.
The mechanism behind the quantum entropic interac-
tion is actualy different from the one in the Bose gas.
In the Bose gas it builds up at short wavelengths, while
in the string gas it is driven by the long-wavelength
fluctuations living on the strings. An alternative, more
intuitive, understanding is available for the Bose-gas
result, Eq. (7). This is based on the simple notion that
every time membranes/world-lines collide an amount
of entropy ~kp is paid because the membranes cannot

M (15)
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intersect [8,10,14]. Hence, these collisions raise the free
energy of the system and this characteristic free energy
cost AFcon1 ~ kpTneon. The density of collisions ngen
is easily calculated: for the world lines, the mean-square
transversal displacement as a function of (timelike) arc-
length increases like (¢ (7) — ¢(0))?) = (F/M)7r. The
characteristic time 7. it takes for one collision to occur is
obtained by imposing that this quantity becomes of order
d? and a characteristic collision energy scale is obtained
Ep ~ h/1. ~ (F*/M)n*. Ep is of course the Fermi
energy: it is the scale separating a regime where world
lines are effectively isolated (E > Ep, free particles)
from one dominated by the collisions (E < Er, Luttinger
liquid). The induced modulus follows from naive coarse
graining:  Ep is the characteristic energy associated
with density change, while d is the characteristic length.
Therefore, B ~ Er/d, reproducing the result Eq. (7),
within a prefactor of order unity.

For the string gas this procedure yields a simple ex-
ponential instead of the stretched exponential [Eq. (14)].
The mean-square transversal displacement now de-
pends logarithmically on the world sheet area A:
([Ap(A)PY="1/(pc)In(A). Demanding this to be equal
to d?, the degeneracy scale followsimmediately. The char-
acteristic world sheet area A, for which on average one col-
lision occursis given by 7i/(pc) In(A.) = d?, where A, =
c272/a® in terms of the collision time ... It follows that
7. = (a/c)e'/?* and the “Fermi energy” of the string
gas is of order E}" = /7, = (hc/a)exp(—1/2u) and
thereby B ~ exp(—1/u). In fact, the same u depen-
dence is obtained from Helfrich’s method if the logarithm
in Eqg. (11) is neglected. Hence, this collision picture
misses entirely the origin of the quantum-entropic re-
pulsions in the string gas. The reason becomes clear
by inspecting the origin of the logarithmic term in the
integrations leading to Eq. (11). Cutting off the smallest
adlowed momenta in the x,7 directions by ¢, one
finds that IN[(922.d)/(a’B)] — — In[(a*B)/(n*2.d) +
a%giin ], and this is unimportant for any finite gmin in the
low density limit. Therefore, the logarithm and thereby
the induced modulus are driven by the long-wavelength
fluctuations on the strings, and these are not considered
in the collision point picture.

In summary, | have analyzed the fluctuation induced in-
teractions in the “ideal” gas of elastic quantum strings in
(2 + 1)D. A novelty isthat in this system theinduced elas-
ticity is due to long-wavelength fluctuations, qualitatively
different from the short distance physics of the Bose gas.
It remains to be seen if these interactions are of relevance
in real physica systems. On the one hand, these are rather
weak and easily overwhelmed by direct interactions [15].
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However, direct string-string interactions which decay ex-
ponentially are generic, and in this case the induced inter-
actions can dominate at sufficiently low density because of
their stretched exponential dependence on density: in prin-
ciple the induced interactions can be physical observables.
The immediate relevance of my findings lies elsewhere.
The strings considered here are idedlizations of the stripes
but these idealizations are nevertheless close to a popular
way of viewing these matters. | have demonstrated that
in the absence of zero temperature stripe long range order
[16] it has to be that these ideal stripes are broken up in
one or the other way.
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