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Molecular Geometry Fluctuation Model for the Mobility of Conjugated Polymers
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We present a model to describe electrical transport in dense films of conjugated polymers. The essen-
tial physical features of the model are as follows: (i) thermal fluctuations in the molecular geometry of
the polymer modify the energy levels of localized electronic states in the material, and (ii) the primary
restoring force for these fluctuations is steric, which leads to spatial correlation in the energies of the
localized electronic states. The model describes the electric field dependence of the mobility and explains
the carrier density dependences of mobility observed in polymer diodes and field effect transistors.

PACS numbers: 72.10.2d, 71.38.+ i, 72.80.Le
Electronic devices based on conjugated polymers have
attracted much attention [1,2]. Understanding the car-
rier transport properties in these materials is important
in order to design new materials and device structures.
Time-of-flight (TOF) measurements show that the elec-
tric field (E) dependence of the mobility in many conju-
gated polymers has approximately the Poole-Frenkel form,
i.e., the mobility increases approximately exponentially
with

p
E [3–5]. Bässler and co-workers extensively stud-

ied mobility in these materials using Monte Carlo simu-
lations of the Gaussian disorder model (GDM) [6]. The
GDM explains some features of the observed mobility;
however, as pointed out by Gartstein and Conwell [7],
a spatially correlated potential for the carriers is needed
to describe the observed Poole-Frenkel behavior. Poole-
Frenkel behavior was first observed in molecularly doped
polymers, in which the dopant molecules have permanent
dipole moments [8,9]. Dunlap and co-workers recently
proposed a model for the mobility of molecularly doped
polymers based on the long-range interaction between the
charged carriers and the dipole moments of the molecu-
lar dopants [10]. An essential ingredient of this model is
the long-range correlation of carrier energies at different
spatial positions that results from the long-range charge-
dipole interaction. However, the mechanism leading to
the Poole-Frenkel behavior in conjugated polymers cannot
be due to charge-dipole interactions, as it is in molecu-
larly doped materials, because most conjugated polymers
do not have permanent dipole moments. An alternative
mechanism is needed to explain the field dependence of
the mobility in conjugated polymers.

There are systematic differences in the mobility pa-
rameters of various conjugated polymers that provide
a clue to the mechanism leading to the field depen-
dence. Specifically, TOF measurements for holes in poly
[2-methoxy,5-(20-ethyl-hexyloxy)-1,4-phenylene viny-
lene] (MEH-PPV) and poly(9,9-dioctylfluorene) (PFO)
have recently been published [3,11]. The mobility in PFO
is about two orders higher than that for MEH-PPV, and the
field dependence is much weaker; that is, the coefficient
of

p
E in the exponential is much smaller for PFO than
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for MEH-PPV. In conjugated polymers such as PPV
and its derivatives, the orientation of the phenylene rings
can easily fluctuate. In PFO, however, this ring-torsion
motion is suppressed by chemical bonding between the
phenylene rings. This difference suggests that fluctuations
in molecular geometry, specifically in the ring torsion,
determines the mobility in these materials.

The restoring force for ring-torsion fluctuations can
be intermolecular or intramolecular. The intermolecular
restoring force dominates in dense films, because the
molecules are closely packed [12]. Fluctuations of the
adjacent molecular orientations give rise to a large steric
energy. By contrast, the intramolecular restoring force is
small: the characteristic energy for the ring-torsion mode
of an isolated PPV molecule is quite small [13].

To understand the energetics of fluctuations in molecu-
lar geometry in conjugated polymers, as a generic proto-
type, we carried out AM1 [14] calculations of the total
energy of a biphenyl molecule as a function of the twist
angle between the two rings [15]. For neutral biphenyl,
as shown in the inset of Fig. 1, the energy is almost inde-
pendent of the torsion angle. However, when we add an
extra electron or hole to this system, the total energy of the
charged state depends strongly on the torsion angle [16].
Thus there is a strong coupling between the local elec-
tronic excitation (carrier) and the relative ring orientation.
We also carried out AM1 calculations for a system consist-
ing of three parallel benzene rings with a given separation
[15]. We calculated the total energy of the system while
rotating the central benzene molecule to estimate the in-
termolecular restoring force. The results of the calculation
show that the intermolecular restoring is dominant over the
intramolecular one in densely packed materials.

To describe the role of fluctuations in molecular geom-
etry, we propose a general model for the mobility in dense
films of conjugated polymers based on the following Ham-
iltonian:
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FIG. 1. Distribution (upper panel) and spatial correlation
(lower panel) of carrier energies with different polaron-torsion
couplings. Solid, dashed, and dot-dashed lines correspond to
n � 0.1, 0.2, and 0.3 eV, respectively. The inset in the lower
panel illustrates AM1 results for the total energy as a function
of the torsion angle in biphenyl. Dashed and solid lines are for
neutral and anion biphenyl, respectively.

Here C
y
i is the creation operator of a carrier (polaron)

localized on a site i and ´i is its bare energy. f�r� is the
molecular geometry field (in PPV and related materials,
it can be regarded as the deviation in torsion angle of
the benzene ring) at position r. K is the intermolecular
restoring force constant. The gradient of f�r� appears
in the intermolecular elastic energy because this energy
depends on the difference between the torsion angles of
adjacent molecules. s is the intramolecular restoring force
constant, which is of secondary importance compared to
K . As shown in the inset of Fig. 1, the energy minimum
in the neutral system occurs at a different angle than in the
charged system. Therefore, expanding the energy of
the charged system around the equilibrium geometry for
the neutral system gives a linear coupling between the
polaron and the torsion angle. n is the coefficient of
this linear coupling term. hi,j describes polaron hopping
between sites. The effect of fluctations in the bare site
energies ´i has been studied in the GDM [6]. Here we
consider cases in which energy fluctuations are dominated
by the interaction with the molecular geometry field and
take the bare site energies all equal to zero.

Because of the coupling between the polaron and the
molecular geometry, the polaron energy is a function of po-
sition: ´�ri� � nf�ri�. By Fourier transforming F�q� �R

d3r f�r�eiq?r , the total free energy from the molecu-
lar geometry fluctuations is V21

P
q jF�q�j2�Kq2 1 s��2,
722
where V is the volume of the system. The distribution
function for the molecular geometry fluctuations is
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where T is the temperature and kB is the Boltzmann con-
stant. Equipartition of energy givesø
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Thus we obtain the spatial correlation of polaron energies,

�´�r1�´�r2�� � n2�f�r1�f�r2�� �
n2kBT
4pKR

e2aR , (4)

where R � jr1 2 r2j and a �
p

s�K . Equation (2) de-
scribes the distribution function for fluctuations without in-
cluding the interaction with the carrier. The effects of this
coupling can be included by taking the expectation value
of the Hamiltonian with the carrier at a specific molecular
site and completing the square to eliminate the linear term
in f. This treatment again gives a Gaussian distribution
function with a modified field variable. It does not change
the results presented here [15].

For one-dimensional (1D) systems, the field-dependent
mobility has been exactly obtained [17], and, in a contin-
uum limit, it can be written as [10,18]

m �
m0

g
R
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where g � beE, e is the electron charge, and
b � �kBT �21. Substituting the correlation function
in the small s limit into Eq. (5) gives

m �
m0e2bs2

b
p

2ps2aeE K1�b
p
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where s2 � n2��2p2Ka�, 1�a is a momentum cutoff, and
K1�z� is the first-order modified Bessel function of the
third kind. Using the asymptotic expansion for K1�z�,
the mobility is m � e2bs2

eb
p

E
p

2ps2ae. Our model and
the charge-dipole model give the same field dependence of
mobility, lnm �

p
E, but they give a different temperature

dependence: lnm � b here compared to lnm � b2 in the
charge-dipole model.

We do not expect the 1D result to be valid for dense
three-dimensional (3D) films. In 3D systems, the carrier
can take an optimal path to avoid high energy barriers [15].
We study the mobility in a 3D lattice by solving the steady
state master equation for the system:

0 �
X
j

	vijPj�1 2 Pi� 2 vjiPi�1 2 Pj�
 . (7)

Here Pi is the probability for the polaron to be on site
i and vij is the polaron hopping rate from site j to site
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i. We have excluded double occupation at a site. After
finding the solution Pi to Eq. (7), we calculate the veloc-
ity from v �

P
ij vjiPi�1 2 Pj�Rji , Rji � rj 2 ri , and

the mobility from v � mE. Compared with Monte Carlo
simulations, the master equation approach has several ad-
vantages: it guarantees the steady state solution; it is more
convenient for considering density-dependent effects; and
it is numerically more efficient.

We generate the molecular geometry fluctuations and,
accordingly, polaron energies on each site. Then we solve
the master equations using a symmetric hopping rate in the
presence of an applied electric field E,

vji � v0e22G�Rij�a�e�b�2� 	´�ri �2´�rj�2eE?Rji
. (8)

We include first and second nearest neighbor hopping.
The system size is 64 3 32 3 32, the lattice constant
is a � 10 Å, 2G � 10, and the applied field is along
the x axis. We use the distribution function, Eq. (2), to
generate the spatially correlated molecular geometry fluc-
tuations. There is no correlation among the molecular
geometry fluctuations in momentum space F�q� for differ-
ent q. We generate distributions of F�q� and then Fourier
transform to get f�r�, which have the correlation given by
Eq. (4).

Figure 1 shows the polaron energy distribution and the
spatial correlation between polaron energies with different
polaron-torsion coupling n for a fixed intermolecular force
constant K � 0.0034 eV�Å. This value for K was chosen
to match with measured mobilities for MEH-PPV; it is con-
sistent with the calculated estimate for this restoring force
described above. Here s is set to zero and the tempera-
ture is T � 300 K. The energy distribution is calculated
by r�z � �

1
V

P
i d	´�ri� 2 z 
. The polaron energy in the

system has a Gaussian distribution with width depending
on coupling n [15].

We consider the field-dependent mobility in the dilute
limit by linearizing the master equation. We present the
field-dependent mobility in Fig. 2 using the same param-
eters as in Fig. 1. The curves are reasonably close to
linear, showing that the model gives approximately the
Poole-Frenkel form. For a more dispersive system (e.g.,
n � 0.3), the mobility is low and has a strong field depen-
dence; whereas, for a more ordered system (e.g., n � 0.1),
the mobility is higher and has a weaker field dependence.

The mobility depends on carrier density because, when
some carriers fill deep potential sites, the others become
more mobile. The density dependence of mobility is stud-
ied by solving the nonlinear master equation. We have
developed an iteration approach to solve these nonlin-
ear equations [15]. In Fig. 3, we illustrate the carrier
density effects on the mobility. We see that the mobil-
ity is enhanced by almost 1 order of magnitude with in-
crease of the carrier density to n � 6.9 3 1018 cm23 at
E � 4 3 104 V�cm. In the low-field regime, where the
field-assisted jumping for carriers is less efficient than in
FIG. 2. Logarithm of mobility m against E1�2 with different
polaron-torsion couplings. Solid, dashed, and dot-dashed lines
correspond to n � 0.1, 0.2, and 0.3 eV, respectively. Other
parameters are the same as in Fig. 1.

the high-field regime, the carrier density effect on mobility
is more pronounced.

TOF experiments are low carrier density measurements.
Carrier mobility in conducting polymers is also investi-
gated in electrical device measurements using polymer
diode and field-effect transistor current-voltage charac-
teristics. Because of the different structure of these de-
vices, they sample very different field and carrier density
regimes. Experiments in polymer diodes sample relatively
high electric fields and low carrier densities, whereas ex-
periments in field-effect transistors sample relatively high
carrier densities and low fields. Recent diode measure-
ments show that, at electric fields of a few times 106 V�cm,
there is not a strong carrier density dependence of the mo-
bility in MEH-PPV for densities up to about 1018 cm23

[19]. Field-effect transistor measurements have suggested

FIG. 3. Logarithm of mobility m against E1�2 with differ-
ent carrier densities for n � 0.3 eV, K � 0.0034 eV�Å, and
T � 300 K. Dotted, short-dashed, long-dashed, and dot-dashed
lines correspond to carrier density n � 0.08, 0.5, 2, and 6.9 3
1018 cm23, respectively. The solid line shows the result of solv-
ing the linearized master equations.
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FIG. 4. Field-dependent mobility plotted on logarithm vs E1�2

scale. In panel (a), dots are experimental data for MEH-PPV
(Ref. [3]), and the solid line is our theoretical result with n �
0.3 eV, K � 0.0034 eV�Å, and T � 300 K. In panel (b), dots
are experimental data for PFO (Ref. [11]), and the solid line is
our theoretical results with n � 0.3 eV, K � 0.01 eV�Å, and
T � 300 K.

that the mobility increases strongly with increasing carrier
density at low fields (typically below a few 104 V�cm)
for carrier densities above about 1018 cm23 [20]. Our cal-
culated results are consistent with both of these types of
device measurements and show why this qualitatively dif-
ferent behavior is expected when the different field/density
regimes are sampled.

To interpret TOF mobility measurements in MEH-PPV
and PFO [3,11], we fit the mobility data of MEH-PPV
[3] by adjusting the parameters n and K around the val-
ues estimated from the AM1 calculations for biphenyl
and the three-benzene system: n � 0.4 eV per radian
and K � 0.002 0.005 eV�Å. We find a good fit, as
shown in Fig. 4(a), can be obtained by using n � 0.3 eV
and K � 0.0034 eV�Å. Torsion fluctuations are strongly
suppressed by chemical bonding in PFO and we use a
larger K to model this situation. Using n � 0.3 eV and
K � 0.01 eV�Å, we find that the theoretical results are in
good agreement with the experimental data for PFO [11],
as shown in Fig. 4(b).

In summary, we have proposed a model to describe
electrical transport in dense films of conjugated polymers
in which thermal fluctuations in the molecular geometry
modify the energy levels of localized (polaronic) electronic
724
states. The primary restoring force for these fluctuations is
steric in origin. Because the restoring force is intermolecu-
lar, there is a spatial correlation in the molecular distortions
which leads to a spatial correlation in the energies of the
localized states. The model explains the experimentally
observed field and carrier density dependence of the mo-
bility and provides a general framework to understand the
transport in conjugated polymers.
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