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Ab Initio Molecular Dynamics with a Classical Pressure Reservoir: Simulation
of Pressure-Induced Amorphization in a Si35H36 Cluster
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We present a new constant-pressure ab initio molecular dynamics method suitable for studying, e.g.,
pressure-induced structural transformations in finite nonperiodic systems such as clusters. We immerse
an ab initio treated cluster into a model classical liquid, described by a soft-sphere potential, which acts
as a pressure reservoir. The pressure is varied by tuning the parameter of the liquid potential. We apply
the method to a Si35H36 cluster, which undergoes a pressure-induced amorphization at �35 GPa, and
remains in a disordered state even upon pressure release.

PACS numbers: 61.46.+w, 36.40.Ei, 62.50.+p, 71.15.Pd
Very recently pressure has been used as a valuable
tool for the investigation of molecular, low-dimen-
sional, and biological systems [1,2]. In particular, the
study of clusters and nanocrystals in solution under
applied pressure has revealed a wealth of interest-
ing new phenomena that sheds light on important
issues such as crystal structure transformation and
nucleation phenomena in systems such as CdSe, CdS,
and Si [3]. Here, computer simulations could sub-
stantially complement the experimental information,
allowing, in principle, the observation of the full
transition path from one structure to another, which is
not directly accessible in an experiment. Many of the
transformations studied involve a rearrangement of the
electronic structure. A realistic description of these
phenomena requires the use of ab initio molecular dy-
namics. However, the complete simulation of the cluster
plus the pressure-transmitting liquid is beyond the limit
of what can presently be handled. For this reason it
is important to develop new computational tools that
can allow these important classes of phenomena to be
studied in a realistic way. Constant-pressure ab initio
molecular dynamics for periodic systems has already
been developed and has proved its usefulness in a large
variety of cases, leading to the prediction and discovery
of new phenomena [4–6]. The aim of this paper is to
extend this approach to finite nonperiodic systems of
arbitrary shape. While we shall focus mostly on the
application to clusters, the method is fairly general and
can find widespread applications. We shall demonstrate
its usefulness with an application to a small cluster
of silicon Si35H36. We find here that pressure can
induce a nonmetal metal transformation accompanied
by a massive structural change. The transformation is
irreversible and when the pressure is released a structure
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different from the initial one is created, thus offering a
way to generate new cluster structures.

Since the main role of the liquid in the above experi-
ments is to transmit the hydrostatic pressure, it is actually
not necessary to model specific properties of a real liquid
in the simulation. It is known that basic properties of a
real simple liquid are captured by a classical short-range
repulsive pair potential [7]. Thus, for the liquid to act as
a pressure reservoir in the simulation, even such a sim-
plified and computationally cheap description can be ex-
pected to be sufficient, provided the potential parameters
as well as the liquid density are appropriately chosen. We
now show how to couple such classical liquid with a quan-
tum mechanical treatment of the system of interest (clus-
ter) within the Car-Parrinello molecular dynamics method
(CPMD) [5].

In order to have a well-defined isotropic constant pres-
sure on the cluster, the number of particles NL and the
volume VL of the liquid should be much larger than
that of the cluster. At the same time, however, it is
desirable to minimize the number of plane waves used
as the basis set in the ab initio calculation, limiting
them to the region of space where the wave functions of
the cluster are significant. To meet both requirements,
we used a smaller “quantum” simulation box without
periodic boundary conditions [8] for the ab initio treat-
ment of the cluster, and a larger “classical” box, contain-
ing the quantum box, with periodic boundary conditions
applied for the liquid. We chose the liquid-liquid and
cluster-liquid interactions as pairwise additive potentials,
VL-L�r� and VC-L�r�, respectively. Adding both interac-
tions as well as the kinetic energy of the liquid particles
to the Car-Parrinello Lagrangian [5], we obtain a new
Lagrangian for the extended system, consisting of elec-
trons and ions of the cluster and the liquid particles,
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Here, XI and m are the coordinates and masses of the
liquid particles, RI and MI are those of the cluster
atoms, and ci and m are the electronic wave functions
and the associated electronic fictitious mass. From this
Lagrangian, equations of motion corresponding to the
coupled Car-Parrinello/classical MD can be derived.

Since the pressure might induce a macroscopic shape
change in the cluster, the liquid should be able to flow
fast enough to accommodate such a change, without de-
veloping appreciable pressure gradients or shear compo-
nents which might hinder the transformation. Under high
enough pressure, however, any liquid would crystallize, or,
in the short time scale of the simulation, undergo a glass
transition, marked by a dramatic slowing down of the liq-
uid dynamics. To avoid this, we have to choose the poten-
tial VL-L�r� in such a way that our region of interest stays
sufficiently far away from the freezing point of the liquid.
Since an attractive component in the potential would favor
freezing, we chose the purely repulsive soft-sphere poten-
tial VL-L�r� � e� sL-L

r �12. We set e � 1 a.u.; the potential
is then fully specified by the single parameter sL-L. The
corresponding equation of state has the form

p �
NLkBT

VL
j�x� , (2)

where p is pressure, T is temperature, and
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is the reduced density; the function j�x� is known from
simulations [9]. The liquid crystallizes at x � xc � 0.8,
where j�xc� � 20 [9]. For a given p and T , once the den-
sity, nL � NL
VL is chosen, sL-L is uniquely determined.
This parameter can thus be conveniently used to tune the
pressure in the system, keeping NL and VL constant, with
no need to change the size of the classical box when chang-
ing the pressure. There are two essentially different routes
to achieve a high pressure p. The first is to work in the
dilute regime (nearly ideal gas), where x ! 0 and j ! 1;
the repulsion between the liquid particles is very low and
a high value of p is achieved due to a high density nL,
or high number of particles NL. The other extreme pos-
sibility is to use a liquid close to its crystallization point
x ! xc, and reach a given pressure with the lowest pos-
sible nL due to a strong repulsion (dense liquid regime).
Here j�xc� � 20, so the same pressure could be reached
with NL reduced by a factor of 20; however, the danger is
that the dynamics of the liquid close to its freezing point
might already be too slow. A suitable compromise between
the extremes has therefore to be found.

We now demonstrate in detail the application of the
method to an example of a silicon cluster Si35H36, and
provide some guidelines for the design of the liquid. The
initial structure of the cluster is derived from the diamond
structure of bulk Si and consists of an atom surrounded
by four shells of atoms; the dangling bonds at the sur-
face are saturated with hydrogen atoms. The cluster has
an octahedral shape with a diameter of 12.5 Å, and is rela-
tively small. Even small clusters, however, can undergo
a well-defined structural transformation under pressure,
as shown experimentally for a Cd32S14�SC6H5�36 ? DMF4
cluster [10]. We used a cubic quantum box of size 18.5 Å
and a cubic classical box of size 36.5 Å. For the density
functional theory calculations, we used norm-conserving
pseudopotentials, a plane-wave basis set, a kinetic energy
cutoff of 15 Ry, and the local density approximation.

Since bulk Si undergoes a transition from diamond to b

tin at 11 GPa, in a small Si cluster we may expect to need
a considerably larger pressure to observe fast structural
changes. A suitable pressure-transmitting liquid should
therefore withstand at least a pressure p � 50 GPa at tem-
peratures T � 600 K, at which we choose to work. To
reach p � 50 GPa at T � 600 K and VL � �36.5 Å�3 in
a nearly ideal gas regime, one would need NL � 3 3 105,
which is too large for the method to be practical. We
compromised between the two extreme choices of NL, re-
quiring j�x� � 10 at p � 50 GPa (i.e., the liquid would
crystallize at p � 100 GPa). This results in NL � 30 000,
still a reasonable number for particles interacting via a
simple classical potential. In the actual simulation, we
used NL � 313 � 29 791; at 600 K we can reach p �
50 GPa for sL-L � 0.66 Å. Under these conditions, the
soft-sphere liquid is still well diffusive, as checked by
monitoring the mean-square displacements of the liquid
particles during a test MD run.

In the experiments [3], the surfaces of the nanocrystals
were either covered by organic surfactants (CdSe and CdS)
or passivated with an oxide layer (Si). These, apart from
saturating the dangling bonds at the surface and making
the clusters soluble in the liquid, also protect the clusters
from possible penetration of liquid particles inside. In prin-
ciple, it is possible to include a surfactant in the simula-
tion, either at a classical or at an ab initio level. Here we
used the simplest possible arrangement, where the dan-
gling bonds were saturated with hydrogen atoms. These
are not allowed to interact with the liquid and simply fol-
low the Si atoms to which they are bonded; only the Si
atoms interact with the liquid. Also for the cluster-liquid
interaction we chose a purely repulsive soft-sphere poten-
tial VC-L�r� � e� sC-L

r �12 with a suitable parameter sC-L.
This must be sufficiently large to prevent the penetration of
liquid particles inside the cluster up to the highest pressure
used. At the same time, however, sC-L determines the in-
terface tension between cluster and liquid. Therefore sC-L

should not be too large, since the interface tension energy
should not become dominant. In our example, we chose
sC-L � 1.75 Å, which has proved sufficient to prevent the
penetration of the liquid into the cluster for pressures up to
p � 50 GPa.

The last liquid parameter to fix is the mass m, which
was set to 20 u, a value low enough not to slow down the
liquid excessively, but large enough to allow a reasonable
MD time step. We used a fictitious electron mass m �
400 a.u., a time step Dt � 0.121 fs, and the atomic mass
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of deuterium for hydrogen atoms. A cutoff of 3s was used
for both classical potentials and no long-range corrections
were applied.

To prepare an initial configuration, we first equilibrated
the liquid at T � 600 K and p � 10 GPa. We also equi-
librated the cluster in vacuum at the same temperature by
standard CPMD. The cluster was immersed into the liq-
uid, and those liquid particles which were closer than 2.5 Å
to any Si atom were removed. The liquid was then equili-
brated for a further 1.2 ps while the cluster was kept frozen;
the liquid could thus approach the cluster and fill the empty
layer around it. Starting from this initial configuration, we
quickly increased the pressure by running the combined
Car-Parrinello/classical MD for 0.24 ps at 10 GPa, 0.24 ps
at 15 GPa, and 1.48 ps at 25 GPa. In all runs described in
this paper, the temperature of both liquid and cluster was
close to 600 K. Whenever the pressure was changed, we
again froze the cluster, changed the interaction parameter
sL-L, and reequilibrated the liquid for 1.2 ps, and also re-
optimized the electronic wave functions. This time turned
out to be sufficient to produce a liquid with equilibrated
temperature and pressure. At 25 GPa, the cluster structure
exhibited some thermal and pressure-induced fluctuations,
but the tetrahedral coordination was preserved [Fig. 1(a)].

We then increased the pressure to 35 GPa and ran
the simulation for 3.37 ps. During this time, the cluster
quickly underwent a transformation to a disordered
structure, changing shape from an octahedron to a roughly
spherical object, where tetrahedral coordination was
no longer dominant and amorphous features appeared
[Fig. 1(b)]. An analysis of the time evolution of the
Kohn-Sham energy gap of the cluster shows that the
transition starts about 0.3 ps after the pressure increase to
35 GPa, and proceeds very fast, with the gap decreasing
from 1.9 to 0.6 eV in 0.12 ps. In order to see what happens
with the high-pressure structure upon release of pressure,
we performed the latter in three steps, simulating the sys-
tem further for 2.35 ps at 25 GPa, 4.17 ps at 15 GPa, and
2.73 ps at 5 GPa. The cluster locally relaxed and appeared
to be again predominantly tetrahedrally coordinated, but
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did not recover its original global structure. Instead, a new
form, clearly elongated along one direction and containing
empty space inside, appeared [Fig. 1(c)]. The Kohn-Sham
gap also gradually increased, but recovered only half of
its original low-pressure value.

In order to obtain some insight into the bonding proper-
ties of the cluster at different pressures, we used the maxi-
mally localized Wannier function method [11] which for
a finite system is actually equivalent to the application of
Boys’ criterion [12]. In an ideal diamond structure, the
Wannier function centers (WFC), which represent points
where the electronic charge is maximally concentrated, are
localized in the middle of the Si-Si bonds. When the struc-
ture deviates from the ideal (e.g., in amorphous Si [13])
and from perfect covalency, the WFC move away from
their central positions, providing an indication of the dis-
order and of the presence of defects [see Figs. 1(a)–1(c)].
To characterize quantitatively the local bonding in the fi-
nal configurations at 25, 35, and 5 GPa, we show in Fig. 2
the distribution of WFC–Si atom–WFC “bond angles” Q

for centers closer to a Si atom than 1.75 Å (position of the
first minimum in the pair-correlation function gSi-WFC).
While at 25 GPa the distribution is clearly centered at
the tetrahedral angle, at 35 GPa it becomes considerably
broader, with structures at lower angles. Upon the re-
lease of pressure to 5 GPa, the distribution becomes nar-
rower again and resembles that at 25 GPa, reflecting the
almost complete recovery of local tetrahedral coordina-
tion. In the inset of Fig. 2, we plot for the final configu-
rations at 25, 35, and 5 GPa the histogram of the spread
sn �

p
�r2	n 2 ��r	2

n of Wannier functions in real space,
which provides a measure of the degree of localization of
the electronic charge. The left and right peaks correspond
to Si-H and Si-Si bonds, respectively. By comparing the
position of the Si-Si bond peak in the low- and high-pres-
sure structures, we observe a substantial increase of elec-
tronic delocalization in the latter. This, together with
the band gap reduction, suggests that the high-pressure
structural transition in the cluster is accompanied by a
profound change in its electronic properties. Analogies
FIG. 1 (color). Final configurations of the cluster at 25 GPa (a), 35 GPa (b), and 5 GPa (c). The red balls represent the centers of
Wannier functions. To allow a comparison of size and shape, all three figures have the same scale and orientation.
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FIG. 2 (color). Distribution of the WFC–Si atom–WFC
“bond angle” Q in the final configurations at 25, 35, and
5 GPa. Inset: histogram of the spread sn of Wannier functions
in the final configurations at 25, 35, and 5 GPa. All curves
have been smoothed.

can be found with the metallization occurring in bulk Si
upon transition from diamond to b-tin structure.

We are not aware of any high-pressure experiments on
small Si clusters of a size comparable to the one we studied
here that we could use for direct comparison. Si nanocrys-
tals studied in Ref. [3] were several hundred Å large in
diameter and exhibited a transition from a diamond to a
simple hexagonal structure at p � 22 GPa. We believe
that the transition to a disordered state in the simulation is
likely to be associated with the small size of the system;
to see a transition to an ordered crystalline structure, the
cluster would probably have to be larger. Si nanocrystals
are of obvious intrinsic basic and technological importance
and it is likely that, in the future, progress in experimental
techniques will allow the creation of very small clusters,
of a size similar to those studied here. Also the short time
scale accessible to the simulation poses a limitation. In
first-order transitions, a crossing of a barrier is usually in-
volved and therefore the associated time scale might be
very long. While by sufficient overheating and overpres-
surizing of the clusters it should be possible to observe the
relevant structural changes on a fast time scale and obtain
qualitative information, the possibility of quantitative com-
parison to experiment is limited. An alternative might be
the use of specific techniques designed for accelerating the
crossing of high barriers [14,15].

In conclusion, we have shown how to set up an ab ini-
tio molecular dynamics with a classical pressure reservoir
suitable for constant-pressure simulations of finite nonpe-
riodic objects, and demonstrated its applicability to the
study of pressure-induced structural phase transformations
in clusters. The idea itself is quite general: depending on
the desired accuracy, the finite system can be described
with various techniques, from quantum-mechanical meth-
ods, e.g., density functional theory or tight binding [16],
to classical force fields. The method can also be applied
to studies of general molecular systems under pressure, in-
cluding systems of chemical and biochemical relevance.
Applications to systems more realistic than Si35H36 clus-
ter are presently underway.
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