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Two-mode rhomboid patterns are generated experimentally via two-frequency parametric forcing of
surface waves. These patterns are formed by the simple nonlinear resonance: �k0

2 2 �k2 � �k1 where
k1 and k2�� k0

2� are concurrently excited eigenmodes. The state possesses a direction-dependent time
dependence described by a superposition of the two modes, and a dimensionless scaling delineating the
state’s region of existence is presented. We also show that 2n-fold quasipatterns naturally arise from
these states when the coupling angle between �k2 and �k0

2 is 2p�n.

PACS numbers: 47.54.+r, 47.20.Gv, 47.35.+ i, 47.52.+ j
Pattern-forming systems often result from nonlinearly
interacting waves. The simplest nonlinear pattern-forming
systems are those in which a single wave number becomes
unstable. Our understanding of these “single-mode” sys-
tems is now well developed. In many situations, however,
numerous different modes may be concurrently excited.
The simplest example of a “multimode” nonlinear system
is, of course, when two distinct wave numbers are simulta-
neously excited. This important class of systems has only
recently begun to be investigated. The space of nonlinear
states that can result is quite rich, as recent experimental
observations of both quasicrystalline patterns [1] and non-
linear superlattice states [2,3] suggest.

Are these the only types of patterns that a two-mode
system can form, and can one characterize the nonlinear
mechanisms that form them? Here we report the first ex-
perimental observation of the spontaneous formation of a
nonlinear state exhibiting rhomboidal patterns, formed as a
result of resonant three-wave coupling between wave vec-
tors with distinctly different wave numbers. Although pre-
dicted to occur in a variety of nonlinear systems, this state
has only previously been observed in a nonlinear optical
system where the orientations of the interacting wave vec-
tors [4] were externally imposed. Below we show that
rhomboidal patterns coupling two wave vectors of length
k2 with one wave vector of length k1 evolve spontaneously
from two circles of linearly degenerate states. These states
have both interesting temporal dynamics and provide a
mechanism for the appearance of two-frequency quasicrys-
talline patterns, which naturally evolve from rhomboidal
patterns when an additional resonance condition is met.

Two qualitatively different types of rhombic systems
have been predicted to exist in driven nonlinear systems.
The first of these results from slight distortions of a hexago-
nal state. These “distorted hexagons” are predicted to be
stable in models that possess quadratic terms with a deriva-
tive coupling [5,6]. Despite the global stability of hexago-
nal states, distorted hexagons were shown in [6] to be
locally stable due to a local energy barrier preventing their
transition to hexagons. They may arise due to either ini-
tial or boundary conditions [7]. Possible experimental re-
alizations of this mechanism are rhombic states observed
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in reaction-diffusion systems [6], convection in an im-
posed shear flow [8], and flux line lattices in supercon-
ductors [9].

A second type of nonlinear rhombic patterns results
from the nonlinear interaction of waves with significantly
different wavelengths. Such states have been observed
numerically in a Swift-Hohenberg model possessing
two unstable wave numbers [10]. They have also been
theoretically anticipated in anisotropic models where
two unstable degenerate wave vectors are resonant with
an externally imposed wave number [11], in nonlinear
optical systems [12,13], and in the analysis of the Faraday
instability excited with two frequencies [14].

In our experiments we use the Faraday instability to
study two-mode nonlinear wave interactions. Beyond a
critical vertical (parallel to �g) acceleration, vibration of a
fluid layer of depth, h, with angular frequency v excites
a pattern of wave number k on the fluid surface. To study
the interactions of two distinct wave numbers, k1 and k2,
we excite the system with two commensurate frequencies,
v1 � mv0 and v2 � nv0, where n . m are mutually
prime integers. The excitation acceleration has the form:

A�cos�x� cos�mv0t� 1 sin�x� cos�nv0t 1 f�� , (1)

where the angle x , describes the degree of mixing between
the two modes.

Our working fluids were Dow-Corning 200 silicone oils
with kinematic viscosities n of 8.7, 23, 47, 87 cS and
TKO-77 vacuum pump fluid with n � 184 cS at respec-
tive temperatures of 30 and 33 6 0.05 ±C. The apparatus
and imaging system are described in detail in [2]. We per-
formed our experiments in circular fluid layers of diameter
14.4 cm with 0.1 , h , 0.55 cm where pattern correla-
tion lengths [1] are typically much less than the system
size. Our imaging system provides visualization of the ab-
solute value of the local slope along the fluid surface. A
1 msec shutter enabled instantaneous visualization of the
fluid states. We also performed high resolution measure-
ments of the surface slope at a single point by measuring
the location of a reflected laser beam with a position sen-
sitive detector [15]. This method yields an accuracy of
1%–5% in the surface slope at the point of reflection.
© 2000 The American Physical Society
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Below we describe two wave-number rhombic (2kR)
states generated with n:m � 3:2 and 12 , v0�2p ,

45 Hz. In experiments with frequency combinations (in
Hz) 50�25, 60�30, 80�40, 56�40, 63�45, 68�48, 70�50,
75�55, 77�55, 50�30, 70�40, 60�45, 65�50, 80�50,
68�52, 84�60, and 100�60, 2kR states were not observed.

In Fig. 1 we present a typical image of a 2kR pattern.
Although k1 and k2 are the linearly unstable wave num-
bers [16] excited by the 3v0 and 2v0 driving frequen-
cies, their specific orientation, hence the type of pattern
selected by the system, is determined by their nonlinear in-
teractions. This nonlinear state is formed by the resonant
triad, �k0

2 2 �k2 � �k1, where j �k0
2j � j �k2j � k2 and j �k1j �

k1. The higher harmonics seen are an artifact of the imag-
ing and can be reproduced by computer simulation. A
similar three-wave resonance occurs for 2:1 forcing; in-
stead of the �k0

2 2 �k2 � �k1 (vector difference) resonance,
an additive �k0

1 1 �k1 � �k2 resonance governs the selected
pattern. The resulting pattern (not shown) is a superpo-
sition of hexagonal lattices composed of the two scales.
These two types of three-wave resonances are consistent
with predictions by Silber and Skeldon [14] based on sym-
metry considerations. In [14] three-wave interactions with

FIG. 1. (a) A typical image of the 2k rhomboid �2kR� state
observed for parameters: v0�2p � 25 Hz, n � 23 cS, and
h � 0.2 cm. The axis y gives the direction of the “compressed”
vector. (b) Power spectrum of (a). The circled wave vec-
tors (bottom right) illustrate the simple resonance condition
�k0

2 2 �k2 � �k1 which creates the grid in k space. The two vectors
�k0

2 and �k2 correspond to the 3v0�2 component while �k1 corre-
sponds to 2v0�2. u here is 41±. (c) A typical phase diagram
(v0�2p � 25 Hz, h � 0.2 cm, n � 23 cS, f � 0). Symbols
describe the measured transitions. Besides the square, hexagon,
and SSS reported previously [2], we observe 2kR and an addi-
tional new state, hexagonal based oscillons (HBO) [19].
additive resonant coupling are allowed only for (even-odd)
frequency ratios, such as 2:1, where the higher frequency
is an even multiple of v0. For odd-even forcing, such as
3:2, no additive triad interactions can occur. A similar
analysis predicts three-wave resonant coupling based on
vector differences (such as �k0

2 2 �k2 � �k1) can occur only
for odd-even forcing.

A typical phase space in which 2kR rhomboids are ob-
served is presented in Fig. 1(c). As in most studies of
two-frequency driving [1,17], two main regions, domi-
nated by either k1 or k2, exist. At a critical value of
x � xc, a bicritical point exists where both wave numbers
are linearly unstable. In this vicinity, the waves can interact
to form a variety of different nonlinear states. Away from
xc, the phase diagram is similar to [2]. Square patterns ex-
ist in the k2-dominant and strongly k1-dominant regions.
Hexagonal patterns, which bifurcate into subharmonic su-
perlattice states (SSS) [2], appear for x , xc. (SSS result
from the nonlinear coupling of the dominant of the two
excited modes with its own subharmonic mode.) In the
vicinity of xc, however, the 2kR state exists in a triangu-
lar region of phase space, bounded from below by squares
of wave number k2 and above by a novel state of oscillons
(i.e., very high-amplitude localized waves [18]) that appear
on an underlying hexagonal wave state with k1 the domi-
nant wave number. A detailed description of these states
will be presented elsewhere [19].

At the lower boundary of the 2kR area the pattern is not
always correlated over the entire system and 2kR (or vari-
ants of this structure) can sometimes be found in two or
three domains. When two domains are formed, the angle
between them is the same as the angle u separating �k2 and
�k0
2 [see Fig. 1(b)]. This behavior also occurs in “knitting

patterns” [20], formed near a bistable point of triblock
copolymer configurations. (These new materials have a
reciprocal lattice structure similar to 2kR states.) As A is
increased, the 2kR domains merge into a single domain.
Further increase of A yields a hysteretic bifurcation to the
“hexagon based oscillon” state (HBO). As the two driv-
ing frequencies are commensurate, the phase variable f

in Eq. (1) is a relevant control parameter. Typically, the
2kR state exists over the range 220± , f , 115±. The
phase space presented in Fig. 1(c) is typical for 0.16 ,

h , 0.22 cm, v0�2p . 20 Hz, and n � 23 cS.
At higher values of n and h a slightly different scenario

exists. As in Fig. 1(c) square and hexagonal patterns still
exist close to onset for, respectively, x . xc and x , xc.
Upon the increase of A, however, both types of patterns
become rolls. The appearance of the 2kR state is, however,
unaffected by the state preceding it. They still appear for
a similar range of f. The HBO also remain. In general,
the size of the region in phase space where a single 2kR
domain exists decreases with the distance from f � 0.

For values of f outside of the range of existence of
2kR, either 2MS or unlocked states appear. 2MS states [2]
are characterized by the spatial resonance �k2 2 �k1 � �k3,
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FIG. 2. The transition points between the regions of 2kR and
2MS�unlocked for f � 0. We plot the dimensionless parameter
d�h [21] as a function of the fluid layer height, h, for (squares)
n � 8.7, (circles) n � 23, (triangles) n � 47, (diamonds) n �
87, and (asterisk) n � 184 cS.

where k3 is a linearly stable wave number whose magni-
tude is determined by the dispersion relation, k3 � k�v3�2�
and temporal resonance v3 � v2 2 v1. In the “un-
locked” type states [2] k1 and k2 both exist concurrently,
but no defined temporal or spatial phase relation between
them exists. The nontrivial f dependence of the pattern
observed here has also been seen in [1,3,17].

To gain a better understanding of the domain of ex-
istence of the 2kR we measured the v0, n, and h de-
pendence of the transition from the rhomboid state to the
2MS�unlocked states for f � 0. The results can be seen
in Fig. 2 where we plot the dimensionless quantity, d�h
at the transition from rhomboids to 2MS states as a func-
tion of both h and n. d � �n�vaye�1�2 where vaye �
�v2 2 v1��2. As the figure shows, a transition occurs
at d�h � 0.15. Above (below) this value 2MS�unlocked
(2kR) states exist. The parameter d�h was also shown to
be important for pattern selection by single frequency ex-
citations [21].

By varying n, h, and v0 it is possible to tune both
the ratio k2�k1 and the angle u (see Fig. 1) of the
2kR state. In our experiments we obtained values of
u � 41± (h � 0.20 cm, n � 23 cS), 36± (h � 0.33 cm,
n � 47 cS), 32± (h � 0.53 cm, n � 100 cS), and 29±

FIG. 3. (left) A tenfold quasiperiodic pattern and its power
spectrum (center) is observed for v0�2p � 30 Hz, n � 47 cS,
and h � 0.33 cm. Circles are drawn with radii k1 (inner) and
k2 (outer). For these parameters u � 360±�10 and five 2kR re-
gions combine to form the quasipattern. For v0�2p � 30 Hz,
n � 23 cS, and h � 0.2 cm (right) an apparent eightfold sym-
metric pattern is seen. However this pattern is actually a de-
formed quasipattern since the 2kR value here of u � 41± does
not evenly divide 360±.
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(h � 0.53 cm, n � 183 cS). The Faraday instability
is known to produce quasicrystalline patterns in some
regions of phase space, where 8-, 10-, and 12-fold patterns
have been observed [1,22]. As suggested by [23], a
quasicrystalline state can be naturally generated when
360�u � n, as then an integer number of triads could be
formed. As conjugate pairs of triads are always formed,
the integer n must always be even (as observed in [1,10])
in this scenario. As Fig. 3 (left) shows, the formation
of perfect tenfold quasicrystalline patterns indeed occurs
when this condition is satisfied. As the power spectrum
in Fig. 3 (center) indicates, each of the inner circle of
peaks of magnitude k1 is coupled by a triad resonance
with two peaks of magnitude k2 along the outer circle. It
is interesting to note that when u � 41±, where a sym-
metric quasipattern is not possible, we observe a distorted
eightfold quasipattern such as the one in Fig. 3 (right).

The temporal behavior of the 2kR state is interesting.
Figure 4 shows a typical time series of the x and y compo-
nents of the surface gradient of this state at a single point.
(The xjj �k1 and y directions are defined in Fig. 1.) In con-
trast to the simple periodic behavior of the standing wave
patterns generated by single frequency excitation, each di-
rection of the 2kR state exhibits different time dependence.
In a given direction, the time dependence corresponds to
the temporal behavior of eigenvectors with components in
that direction. The overall time dependence of the surface
height h can be described by

h�t, x, y� ��a1 cos�v0t� 1 a2 cos�2v0t� 1 · · ·� cos� �k1 ? �x�

1 �b1 cos�v0t�2� 1 b2 cos�3v0t�2� 1 · · ·�

3 �cos� �k2 ? �y� 1 cos� �k0
2 ? �y�� . (2)

An arbitrary x, y point will contain the time behav-
ior of both the k1 or k2 eigenfunctions. By our choice
of axes, the ≠xh component contains mainly the v1�2,

FIG. 4. The time dependence of the 2kR state was studied us-
ing the reflection of a laser by the surface waves. The directional
derivatives ≠xh, ≠yh as a function of time (left) and their cor-
responding power spectra (right) show that each direction has
a different temporal dependence. [The x, y directions are de-
fined in Fig. 1(a).] ≠yh is dominated by the k2 and k0

2 compo-
nents and ≠xh corresponds to the k1 component. The parameters
for the above were v0�2p � 22 Hz, n � 23 cS, f � 0, and
h � 0.2 cm.
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FIG. 5. A typical sequence of images (upper) and their power
spectrum (lower) taken for the 2kR-hexagon state that appears
for n � 8.7 and 0.1 , h , 0.2 cm. For fixed parameters each
temporal phase appears different as the state changes from (right)
a pure, k1 dominant, hexagonal phase to (center) a 2kR phase
and (right) a combination of both. Similar states were also
observed in 4:5 forcing.

2v1�2, . . . (note: v1 � 2v0, v2 � 3v0) peaks, while
the dominant frequencies in the y direction are �v2 2

v1��2, v2�2, . . .. When a single mode is dominant, the
predictions of [24] are in good quantitative agreement
with our measurements of the relative peak intensities.
In the regime where two modes are concurrently excited,
[24] is inapplicable, and a new theoretical framework is
needed.

For n � 8.7 cS, 0.1 , h , 0.2 cm, and d�h , 0.13,
in place of the pure 2kR state an interesting variant is ob-
served whose symmetry changes with its temporal phase.
This is shown in Fig. 5 where a time sequence is presented
for fixed experimental parameters. For different temporal
phases pure hexagonal (left), rhomboid dominant (center),
and mixed hexagonal and 2kR (right) are seen. Together
with the vector triad characteristic of 2kR, coupling with
the difference vector, �k2 2 �k1, is also observed in the spa-
tial spectrum. This state exists for a significantly broader
range of f (270 , f , 70) than the pure rhomboidal
state.

As demonstrated above, the space of nonlinear patterns
formed by two interacting unstable modes is very rich.
Our understanding of the types of structures and their se-
lection is just beginning. Predicted nonlinear three-wave
resonances [14], however, appear to govern nonlinear pat-
tern selection only for the simplest ratios (3:2 and 2:1).
Although a quantitatively accurate [24] theory exists in
regimes where a single mode is dominant, a quantitative
theory for the important regime of two or more concur-
rently unstable modes is lacking.
We acknowledge the support of the Israel Academy of
Sciences (Grant No. 203�99).
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