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The statistics of uncorrelated point vortices in a plane is studied analytically and numerically. Theo-
retical distributions are obtained with the general method developed by Holtsmark [Ann. Phys. 58, 577
(1919)] and Chandrasekhar [Rev. Mod. Phys. 15, 1 (1943)]. They are found to agree with the results
of numerical tests. Randomly placed Euler vortices have nearly Gaussian velocity distributions and
Lorentzian distributions of the velocity difference. Statistics of other types of point vortices is essentially
non-Gaussian.

PACS numbers: 47.32.Cc, 47.10.+g, 47.27.– i
A number of fluid models in hydrodynamics and in
plasma physics admit singular solutions in the form of
two-dimensional, propagating point vortices. To a first
approximation they model turbulent vortex patches on the
scale of the correlation length. This suggests that the in-
vestigation of point-vortex systems could contribute to the
understanding of turbulence.

A large part of the work on the statistics of point-vortex
systems is based on a seminal paper by Onsager [1] and
deals mainly with thermal mean-field equilibrium states.
It investigates either the statistics of the coordinates of the
vortices or that of the Fourier coefficients of the vorticity
field [2–4]. A review of these researches is given in [5].
The thermodynamic theory of point-vortex systems is quite
complex and still controversial. By introducing thermo-
dynamic functions (structure function, entropy, Helmholtz
free energy etc.), one needs to prove the existence of an
extensive thermodynamic limit. Such a proof is a highly
nontrivial matter [6,7]. On the other hand, even in the ab-
sence of a thermodynamic limit a statistical approach to
point-vortex systems is still justified since rigorous limiting
probability densities do exist. This point of view has been
advocated by Cambell and O’Neil [6] and Kiessling [8],
who state that, although formally defined thermodynamic
integrals may not be (uniformly) convergent, the statisti-
cal mechanics of a finite N-particle system makes perfect
sense.

In this paper, we treat a 2D vortical flow as a gas (er-
godic ensemble) of point vortices whose coordinates are
uncorrelated. Following Refs. [6,8], the properties of this
gas are analyzed from first principles, without introducing
ab initio thermodynamic functions. We investigate the dis-
tributions of velocity and velocity difference fields. These
fields are of fundamental interest. According to experi-
ments the velocity distribution in turbulence typically has
a nearly Gaussian shape, while the velocity difference dis-
tribution is nearly Lorentzian (Cauchy) [9]. Explanation of
these phenomenona is still controversial.

In point-vortex models, the distribution of vorticity is
treated as a collection of point vortices with strengths kj .
The corresponding flow in the �x, y� plane is
0031-9007�00�84(4)�650(4)$15.00
v�r� �
X
j

kjez 3 =G�r 2 rj� , (1)

which means that the velocity vi of the ith vortex at r � ri

is induced by all other vortices. In Eq. (1), ez is the
unit vector in the direction perpendicular to the plane,
and G is the Green’s function of the appropriate differ-
ential operator that relates the (generalized) vorticity to
the streaming potential. The above equation represents,
in fact, a large number of different physical models. The
most well known of these models is 2D hydrodynamics
(Euler) [10], where the operator is (minus) the Lapla-
cian. If the plane is unbounded, the Green’s function
is G � 2�2p�21 log�jr 2 r0j�. If G ~ K0�jr 2 r0j� (K0
is the modified Bessel function), Eq. (1) then describes
geostrophic flows [11], drift-electrostatic vortices [12], and
electron vortices [13] in magnetized plasmas. Alfvén cur-
rent-vortex filaments in a magnetized plasma show a mix
of logarithmic and Bessel behavior [14]. The case G ~

1�jr 2 r0j corresponds to Hall vortices in a thin plasma
slab [15]. Other examples can be found in [16]. Although
we consider mainly the vortices in unbounded ideal flu-
ids, our results are applicable to arbitrary systems of ob-
jects whose pairwise interaction energy in two dimensions
is proportional to G�r 2 r0�.

The statistics of uncorrelated vortices is usually stud-
ied from the point of view of the central limit theorem
[17,18]. According to the standard formulation of this
theorem [19] the probability density for the sum of
N equally distributed independent random variables jj

�j � 1, . . . , N� becomes Gaussian in the limit N ! `,
provided that the second momentum (the variance) of the
common distribution f�jj� exists,

R
j

2
j f�jj� djj , `.

The velocity of the ith vortex has the form vi �
P

j vij .
Here, vij is the contribution from jth vortex, which can
be treated as the random variable jj . Since indepen-
dently distributed point vortices can be arbitrarily closely
placed near one another, the variance

R
v2

ijf�vij� dvij

(dvij is the volume element in the velocity space)
diverges and the central limit theorem, which would
predict a Gaussian distribution for vi , need not be valid.
In this paper we investigate vortex statistics according to
© 2000 The American Physical Society
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the method introduced by Holtsmark [20]. This general
statistical approach has been widely used in the theory
of spectral line broadening (see [21] for a review) and
has also been applied to describe the distribution of
the gravitational force from stars that are randomly
distributed in space [22]. As has been concluded in
[23], and independently in [16], the Holtsmark method
is also applicable to point-vortex systems.
We consider N point vortices randomly distributed in-
side the domain D of area S in a two-dimensional un-
bounded plane. The vortex number N is supposed to be
large, but finite. The restriction to an unbounded region
has been made mainly for convenience. In this case the
Green’s functions are simpler which enables us to get an-
alytical estimates and to compare them with the results of
numerical tests. The probability f�r, v�dv that the N th
vortex located at r has velocity between v and v 1 dv is
f�r, v� �
Z

d

µ
v 2

X
kjez 3 =G�r 2 rj�

∂
s�r1, k1� dr1dk1 · · · s�rN21, kN21� drN21dkN21 . (2)

Here, d is the delta function and s�r, k� is the vortex distribution over space and strengths. We consider the asymptotic
behavior of integral (2), for large �N , S� at a fixed ratio n � N�S. Expressing the delta function as a Fourier integral and
assuming that all vortices have equal strength kj � k, Eq. (2) can be reduced to [16,22]

f�r, v� �
1

�2p�2

Z
exp

(
ik ? v 2 N

Z
�1 2 exp�ikez ? k 3 =G�r 2 r0���s�r0� dr0

)
dk . (3)
In what follows we consider the vortices to be uniformly
distributed over the domain D, so that s�r� � 1�S and the
vortex density n � N�S is constant.

We are interested in the difference w � v 2 V between
the flow velocity (1) and its average value V . The subtrac-
tion of the average velocity V is equivalent to introducing
a uniform, neutralizing background. For N ! ` the distri-
bution f does not depend on the vortex position r or on the
shape of the domain. It is also clear that, due to symmetry,
the function f depends only on w � jwj. First, we inves-
tigate hydrodynamic (Euler) point vortices with Green’s
function G � 2�2p�21 log�jr 2 r0j�. We estimate the in-
tegral (3) in two different limits. The distribution function
f�w� at moderate velocities w is determined mainly by in-
teractions between distant vortices. Considering a vortex
placed at the center of a circular configuration and taking
into account the leading term in N only in (3), we arrive
at [16]

F�w� �
w
w̄2 exp

µ
2

w2

2w̄2

∂
, w̄ 	 �nk2L�8p�1�2,

�w # w̄� , (4)

where F�w� � 2pwf�w� and L � logN . The high-ve-
locity tail of the distribution function f�w� is determined
by the interaction between the vortex and its nearest
neighbor. From the conditions f�w�dw � ndr0 and
w � jkj��2pjr 2 r0j�, it follows that (see [16–18])

F�w� � �k2�2p� �n�w3� , �w ¿ w̄� . (5)

Note that the function F�w� given by Eq. (4) is normalized,R
F�w� � 1, without taking into account small corrections

due to the high-velocity tail (5).
In order to verify Eqs. (4) and (5), we have carried out

numerical simulations with N � 1.6 3 105 identical point
vortices. The vortices are placed randomly inside a circle
of radius R. A circle with uniformly distributed vortic-
ity density v̄ � kN�pR2 will rotate with constant an-
gular velocity v̄�2. It is convenient to introduce units
in which this rotation velocity and the characteristic dis-
tance between vortices d̄ � �S�pN�1�2 are equal to unity.
This implies the choices R �

p
N � 400 and k � 2p.

Subtracting the solid rotation around the “vorticity center”
of the configuration, we calculate the random velocity w
and its distribution over the vortex array. This numerically
obtained distribution function is shown in Fig. 1 by open
circles. The solid line represents the analytical expression
(4) with w̄ � 2.7. Figure 1 demonstrates that the bulk of
the distribution function is well described by Eq. (4), al-
though the value of w̄ differs from the estimate w̄ 	 2.5
which follows from (4) for the actual values of N , R, and
k. Although the numerical distribution in Fig. 1 is nearly
Gaussian, the non-Gaussian tail remains significant. This
is clear from Fig. 2, where the data from Fig. 1 are shown
by open circles together with the solid lines which repre-
sent the analytical expressions (4) and (5) with w̄ � 2.7.
It is seen that the high-velocity tail is well approximated
by Eq. (5).

FIG. 1. Velocity distribution of identical, randomly placed
Euler point vortices (open circles) along with Gaussian fit (4)
(solid line).
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FIG. 2. Velocity distributions of regularly placed Euler vor-
tices with random strength (solid triangles) and of randomly
placed vortices with identical strength (open circles).

If the vortices do not have equal strength, then the
integration in (2) should be performed both over vortex
positions and strengths. One expects that, to a first ap-
proximation, (4) and (5) are still valid with k being the
averaged absolute value of the vortex strength, k ! 
jkj�.
To check this, we have calculated the velocity distributions
of randomly placed vortices with random strengths in the
interval �24p, 4p�. The resulting distribution function in-
deed agrees with (4) for w̄ � 2.9. In order to check that
our results are not sensitive to the shape of the area that is
occupied by the vortices, we have repeated the test placing
vortices inside a square. Only minor changes in the bulk
of the distribution function have been found. These nu-
merical tests confirm the existence of a probability density
F�w� that converges to (4), in spite of the fact that integral
(2) does not converge.

We have also calculated the velocity distribution of regu-
larly placed vortices with uniformly distributed random
strengths kj [ �24p , 4p�. The vortices are placed on the
nodes of the square grid, xl � l

p
p, ym � m

p
p, with

�l, m� � 0, 61, 62, . . . , which provides approximately
the same number of vortices inside the circle as in our first
numerical test. The corresponding distribution, shown in
Fig. 2 by solid triangles, is purely Gaussian.

In case of logarithmic interactions between vortices, the
Holtsmark distribution is almost Gaussian. In particular,
for this reason the Holtsmark origin of the velocity distri-
bution has not been recognized in earlier numerical simu-
lations [17,18]. This Gaussian character has the following
explanation [16]. Consider the interaction of a vortex at the
origin with vortices inside a region of fixed spatial angle
and with characteristic scale L. This region contains N 0 	
Lh vortices, where h is the spatial dimension. Statistical
fluctuations of N 0 are

p
N 0 	 Lh�2. If =G scales as 1�jr 2

r0ja , the velocity fluctuation of the vortex at the origin is
w ~ Lh�22a . In the 2D case, h � 2 and a � 1. This
results in equal contributions to w from large and small
652
scales and determines the Gaussian form of (4). The de-
viation of the Holtsmark from a Gaussian distribution can
clearly be seen for nonlogarithmic Green’s functions. We
have carried out numerical tests with geostrophic vortices
taking G � �2p�21K0�gjr 2 r0j�. In the limit gR ! 0
the Euler case is reproduced, while for large values of gR
the distributions are clearly non-Gaussian. As another ex-
ample, we take Hall vortices with G � 1��2pjr 2 r0j�
[15,16]. Equation (3) be integrated analytically [16],

F�w� �
w�

p
2 w̄

�1 1 w2�2w̄2�3�2 , w̄ � n
jkj��2
p

2 . (6)

The velocity distribution functions of randomly placed vor-
tices with fixed strength and vortices with random strength
which are regularly placed on the square grid are shown
in Fig. 3 by open circles and solid triangles, respectively.
They agree with the Holtsmark distribution (6) with w̄ �
1�
p

2 	 0.7 and the Gaussian distribution (4) with w̄ �
0.65, respectively. Note that Eq. (6) and Fig. 3 also de-
scribe the distribution of the gravitational field in disk
galaxies, where the stars lie almost in a plane.

A more realistic model of turbulence introduces a mini-
mal distance dmin between vortices [17]. The condition
that the vorticity dissipation rate at d � dmin is compa-
rable to the inverse characteristic time scale of the flow
gives the estimate dmin 	 d̄�

p
Re, where Re � w̄d̄�n is

the Reynold’s number. Figure 3 shows velocity distribu-
tions of randomly placed vortices which have been gener-
ated under the restriction that the distance between them
is larger than dmin. The result proves that the Holtsmark
distribution persists for dmin�d̄ , 0.1.

For the logarithmic Green function the Holtsmark distri-
bution manifests itself when the velocity difference of the
flow induced by the vortices is measured. The velocity
difference between two points Dw�r, d� � w�r1d�2w�r�

FIG. 3. Velocity distributions of regularly placed Hall vortices
with dmin �

p
p d̄ (solid triangles) and randomly placed vor-

tices with random strength (open circles). Gaussian (4) and
Holtsmark (6) distributions (solid lines) hold, respectively. The
intermediate solid curves show velocity distribution of vortices
with dmin�d̄ � 0.4 (a), 0.8 (b), 1.2 (c).
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FIG. 4. The distribution of velocity differences (open circles)
in a system of Euler vortices and the Holtsmark function (6)
(solid line).

at distances d # d̄ is approximately determined by the gra-
dient of G which behaves as 1�r . A straightforward cal-
culation shows that the velocity difference distribution is
given by Eq. (6) with w ! Dw and w̄ ! nd
jkj��2

p
2.

In our last numerical test we have investigated the veloc-
ity difference field produced by randomly placed vortices
with random strength. We have calculated the velocity dif-
ferences between 105 pairs of points which are randomly
sampled in space. The distance d1 between these points
is fixed, d1 � 0.1. To avoid boundary effects, the points
are picked near the center of the configuration. The nu-
merical distribution function is shown in Fig. 4 by open
circles. The solid line is the Holtsmark distribution (6) with
w̄ � 0.075. This distribution is similar to the Lorentzian
velocity difference distribution that has been observed ex-
perimentally [9].

In general, Holtsmark distributions are non-Gaussian
when the central limit theorem is not applicable. We have
demonstrated that non-Gaussian distributions occur even
when the vortex velocity is limited from above and, hence,
all momenta of the distribution f�wj� exist. This hap-
pens because the central limit theorem imposes the addi-
tional condition [19] that an individual contribution does
not dominate the total sum (1). This implies that the maxi-
mum possible velocity wmax due to the interaction between
nearest neighbors, should not exceed w̄. If there is no
minimum separation between the vortices, this condition
can never be reached, not even for the logarithmic Green’s
function. However, the relative number of particles in the
high-velocity tail dN scales as dN�N ~ 1� logN . This
slow, non-normal convergence to a Gaussian distribution at
N ! ` has also been observed in numerical experiments
[17,18].

The point-vortex model of turbulence can also be ap-
plied to the 3D case when the Green’s function in Eq. (1)
is G � 21��4pjr 2 r0j� [23]. The contribution to ran-
dom velocity from vortices at distances L scales as w ~
Lh�22a 	 L21�2 for h � 3, a � 2. The function w�L�
can decay even faster since the fractal dimension of the real
turbulence is estimated both experimentally and theoreti-
cally (see [23] for references) to be h 	 2.6 6 0.1. Thus,
due to the vanishing contribution from large distances, in
the 3D case the point-vortex model predicts non-Gaussian
distribution even for the velocity field. However, the de-
viation from a Gaussian is rather limited, except for the
high-velocity tail [23]. The velocity difference distribu-
tion, on the other hand, will be strongly non-Gaussian.
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sociation agreement with financial support from NWO and
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