
VOLUME 84, NUMBER 4 P H Y S I C A L R E V I E W L E T T E R S 24 JANUARY 2000

638
Granular Packings and Fault Zones
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The failure of a two-dimensional packing of elastic grains is analyzed using a numerical model. The
packing fails through formation of shear bands or faults. During failure there is a separation of the system
into two grain-packing states. In a shear band, local “rotating bearings” are spontaneously formed. The
bearing state is favored in a shear band because it has a low stiffness against shearing. The “seismic
activity” distribution in the packing has the same characteristics as that of the earthquake distribution in
tectonic faults. The directions of the principal stresses in a bearing are reminiscent of those found at the
San Andreas Fault.

PACS numbers: 45.70.Cc
There are different natural systems which fail through a
localized failure in narrow shear zones. These so-called
shear bands appear, for example, in granular packings
[1,2]. Tectonic faults are another example of shear failure
in narrow zones. The objective of this Letter is to demon-
strate similarities between these two systems, and to show
that granular packings may provide a significant contribu-
tion to understanding the mechanics of tectonic faults.

We investigate a two-dimensional packing of elastic
spheres [3]. To avoid a perfectly regular packing there
is a random variation in the radii of the spheres, 0.25 #

r # 0.75. In a tectonic fault the spheres would correspond
to discrete pieces of cracked rock within the Earth’s crust.
We imagine that a fault is approximately invariant in the
vertical direction and may therefore be considered as two
dimensional. The spheres (grains) obey Newton’s mechan-
ics, and there is both a dynamic and a static friction be-
tween grains in contact [4]. The static friction is modeled
by a spring at the contact. This spring may break (slip)
but it is formed again (sticks) at a new contact point af-
ter a slip. If the tangential force is larger than jmsFnj, the
static friction slips (ms is the static friction coefficient and
Fn the normal force at the contact). The dynamic friction
results in a force mdFn which acts in the direction that op-
poses sliding at the contacts. To damp out oscillations in
the packing, a “viscous” damping term is introduced. This
is just a force proportional to the velocity of a grain, and
it acts in the direction opposite to the velocity.

In a tectonic fault the large blocks of rock are, of course,
not simple spheres. The most significant difference be-
tween a packing of spheres and that of closely packed ir-
regular blocks is that the spheres can rotate on each other as
in a bearing. If, however, the shear stress on the blocks in
the fault increases, the shape irregularities that hinder the
blocks from rotating will eventually break, and blocks will
begin to rotate. The introduction of fragmenting blocks is
beyond the scope of this investigation, and here we con-
sider only spherical blocks.

At the beginning of a simulation, grains are placed ran-
domly in a two-dimensional box with stiff boundaries. The
0031-9007�00�84(4)�638(4)$15.00
packing is then allowed to relax until all velocities van-
ish. Then the boundary conditions are changed. Stiff hor-
izontal bars at the top and bottom of the packing begin
to compress it vertically with a constant velocity. At the
sides of the packing “floppy” sheets are attached, and an
external pressure P compresses the packing horizontally.
Technically this is done by connecting the grains on the
sides of the packing by line segments and calculating the
forces on the grains as if the line segments were stiff bars
under pressure from the outside. The “side grains” con-
sist of all the grains on a side of the packing that can be
connected by a chain of line segments whose angles to
the vertical never exceed some predefined maximum angle.
Since the connections of the side grains are updated often,
there is little resistance to local deviations in the shapes
of the vertical sides of the packing. The “side sheets” are
therefore floppy.

There are several parameters in our model. The geo-
metrical parameters like, e.g., the average radius of the
grains are rather trivial. The number of grains is, of course,
limited by the computer power. The damping coefficients
must be chosen large enough to keep the simulations stable
with a reasonable time step, but small enough in relation
to the compression velocity. Because of Newton’s second
law, the dynamics (i.e., grain accelerations) of the model
is invariant as long as the ratio of the contact forces to the
mass of the grains stays constant. This means that the scale
of the stiffness constants, the pressure P, and the damping
coefficients can be chosen freely as long as the mass den-
sity of the grains is rescaled accordingly.

Figure 1 shows the result of a simulation. In this
particular simulation, Young’s modulus of the grains was
1010 N�m2, ms � md � 0.5, the mass density of the
grains was 104 kg�m3, the shear stiffness (static friction)
was 2.0 3 109 N�m, and the damping coefficient was
104 N s�m. Figure 1A shows the initial packing with
the compression bars and the side sheets, while Fig. 1B
shows the final configuration of the simulation. Figure 2A
shows the traces of the grains during the last part of the
simulation. The grains have moved diagonally upwards in
© 2000 The American Physical Society
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FIG. 1. (A) The initial packing with side sheets and the com-
pression bars. (B) The final packing.

the lower part of the packing and diagonally downwards
in the upper part. There are two distinct boundaries in the
grain motions. These have been marked by lines. It is
only in these two boundary zones that there is significant
relative motion between neighboring grains. Shear strain
is thus concentrated in these two narrow zones. Figure 2B
shows the rotations of the grains during a short time
interval. Rotation is indicated by a linear gray scale.
Black grains have rotated clockwise (more than 6±), gray
grains mean close to zero rotations, while the white ones
have rotated counterclockwise (less than 26±). There is a
distinct concentration in the shear zones of the grains with
the highest rotation rates. The grain motions at the shear
zones in Fig. 2A are such that clockwise rotations should
be dominant. Figure 2B, however, reveals that both clock-
wise and counterclockwise rotations are concentrated in
both shear zones.

Another surprise appears when one applies the Mohr-
Coulomb criterion to the in-plane angle of the failure zones
[5]. In the Mohr-Coulomb model the failure zones are as-
sumed to be “slip planes” orientated at the angle that maxi-
mizes the difference between the shear force at a grain
contact and the force threshold for a contact slip. This

FIG. 2. Traces of the grains, grain rotations (linear gray scale,
66±), and principal stress directions. The shear bands are indi-
cated by lines.
predicts a shear-zone angle of about 632± to the verti-
cal. Simulations result in a considerably larger angle,
39± 6 4±.

A third surprise appears by examining the stress tensors
of the grains. According to elasticity theory, one would
expect that the principal stress direction corresponding to
the largest eigenvalue of the stress tensors of the grains
would be roughly vertical because of the vertical compres-
sion of the packing. Large shear stresses would then be in-
duced diagonally in the packing and cause the shear bands
according to the Mohr-Coulomb theory. The packing be-
haves, however, differently. First, the principal directions
are not simply vertical but form a network pattern called a
“granular skeleton” [6,7] (Fig. 2C). Second, many of the
rotating grains in the shear zones have principal stress di-
rections that are almost perpendicular to the zone direction,
as seen, for example, in Fig. 3. Quantitatively, we have ob-
served that (20–30)% of the grains in a zone have a prin-
cipal stress direction that is within 10± from being either
parallel or perpendicular to the zone direction. This means
that the shear stress on a zone is rather low. This observa-
tion is in contrast to the Mohr-Coulomb model, but con-
sistent with field measurements in the San Andreas Fault
area [8].

The explanation to the above puzzles can be found on
the microscopic level in the geometry of the packing. Fig-
ure 4 shows a detail of a shear band. As above, the gray
scale indicates the rotations of the grains over a short time
interval. In the middle of the figure there is a configuration
of about 20 grains in contact that are either black or white,
and with only black-white contacts. What this figure shows
is a spontaneous formation of a local rotating ball bearing.
This configuration can rotate without any shear stress. In
areas with dominantly gray grains (i.e., no rotations), the
number of contacts and the local density is on the average
higher than in the bearing. A perfect bearing can have at
most 4 contacts per grain as also seen in Fig. 4A, while a

FIG. 3. A detailed picture of the principal stress directions at
a shear zone.
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FIG. 4. Detailed pictures of a shear band. The figures are
snapshots of the geometry and display the integrated particle
rotations over an interval in time as a gray scale. Black cor-
responds to maximum clockwise rotation, and white the oppo-
site. A perfect rotating bearing containing about 20 grains is
visible in A.

dense packing has approximately 6 contacts per grain. The
density difference between a perfect bearing and a dense
packing is about 15%.

One can think of the local grain configuration as being
in one of the two possible “states” separated by an energy
barrier. In the “bearing” state the local density of grains
is lower, but there is no resistance against shearing. In the
“dense packing” state the density is higher, but there is a
large resistance against shearing. With this interpretation
in mind, Fig. 2B can be seen as a “phase separation” with
the bearing state in the shear bands and the dense-packing
state elsewhere. This two-state picture does not, of course,
work perfectly. The local geometry changes all the time
and local bearings form and die as contacts open and close.
Sometimes also two or more grains rotate together as a
rigid body within a shear band, and sliding contacts are
never totally absent. We have detected perfect local bear-
ings of up to about 30 grains which have lived for almost
10% of the total simulation time.

The energy barrier between the two grain-packing states
is given by the work against the compression of the pack-
ing which is needed to obtain the lower density of the
bearing state. The bulk modulus �K� is, in terms of
Young’s modulus �E� and Poisson ratio �s�, given by K �
0.5E��1 2 s�. On the other hand, the energy gain in the
bearing state consists of the relaxation of the shear stress.
The shear modulus �m� is given by m � 0.5E��1 1 s�.
If the density in the bearing state is rb and in the dense
packing state rd , we get a critical local shear strain (i.e.,
the strain at which it is energetically favorable for the sys-
tem to change state) given by

Uc �

s
1 1 s

1 2 s

rd 2 rb

rd
. (1)

The densities in the two states can be approximated by the
densities of regular packings in a triangular (rd � p�4)
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and in a square lattice �rb � p��2
p

3��. This gives a nu-
merical value of approximately 0.2 for Uc, which is in rea-
sonable agreement with simulations (the shear bands begin
to form when the compressive strain is about 0.1–0.2).

To further test the two-state picture we investigated the
average number of contacts per grain as a function of time.
The number first increases as a packing is compressed and
reaches a maximum of about 5 contacts per grain (this
should be compared to a perfect triangular packing for
which the number of contacts is 6). When shear bands
begin to form, the number decreases by (2–3)%, which
corresponds to about 7% of the grains being in the bearing
state if we, as above, assume that the number of contacts
per grain decreases from 6 to 4 when a grain passes the
energy barrier to the bearing state. 7% is a reasonable
fraction in comparison with Fig. 2B (where 16.5% of the
grains are either black or white).

With this picture in mind it is possible to understand
the puzzles mentioned above. The bearings can be formed
only when contacting grains rotate in different directions,
and therefore there is a concentration of both clockwise and
counterclockwise rotations in the shear bands. Since the
shear bands are not slip planes the Mohr-Coulomb model is
not valid, and it is no surprise that the calculated in-plane
angles are not consistent with simulations. Finally, the
bearings have no shear stiffness, which means that the
principal stress direction will be more or less perpendicular
(or parallel) to the shear band, depending on how close to
perfect the bearing formation is in the band.

To study the time development of the packing we plot
the total volume of the packing as a function of time
(Fig. 5a) and the total force on the top compression bar
(scaled by the external pressure), also as a function of time

FIG. 5. The total volume (A) and the ratio of the total verti-
cal force to horizontal pressure (B) versus time (the horizontal
pressure is E�150 and E�300, where E is Youngs modulus of
the grains). A time series of the force fluctuations (C), and the
distribution of the seismic activity (D) (compression velocities
0.44 and 1.33).
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(Fig. 5b). The initial volume fluctuations result from the
change in the boundary conditions, i.e., from a rigid box
to the floppy side sheets. The oscillations are, however,
soon damped out. The total volume decreases initially but
reaches then a minimum and increases thereafter as bear-
ings begin to form. As expected, a minimum in volume
corresponds to a maximum in the total force and vice versa.
More interesting than the total force, in relation to tectonic
faults, are the fluctuations in the force. The slow energy
input due to the compression of the packing is dissipated
by the damping, but rapid fluctuations in the force spread
through the packing as oscillations, and these can be regis-
tered as “seismic activity.” A time series of the activity is
shown in Fig. 5c. It clearly shows a distinct separation of
the activity into a few large magnitude “earthquakes” and a
lot of small-magnitude oscillations. This is also seen in the
activity distribution (Fig. 5d) which displays a power-law
distribution of the small-magnitude events. There is a
distinct gap in the distribution which separates the small
magnitude events from the large-size earthquakes. This
distribution is qualitatively similar to the characteristic dis-
tribution of the seismic activity in fault zones [9].

As mentioned above, the spherical grains used in our
numerical model are a simplification in view of a tectonic
fault. Asperities on the closely packed fragmented blocks
deep in a fault zone will hinder them from rotating. An
increasing shear stress will eventually lead to fragmenta-
tion of the asperities, and to a release of shear stress which
results in earthquakes. For granular packings it has been
demonstrated in Refs. [10,11] that fragmentation under a
biaxial compression (or a uniaxial compression with pe-
riodic boundaries in the other direction) drives a packing
towards a space-filling state. It has been found for several
fragmentation criteria that the fragment-size distribution
approaches a power law of the form N�r� ~ r22, which is
fairly close to the size distribution of fractal, space filling,
Appolonian packing N�r� ~ r22.3 [12]. It is also possible
to build space filling bearings in a similar manner as the
Appolonian packing [13]. One can then ask an intrigu-
ing question. Could the fragmentation of rocks in tectonic
faults lead to the formation of local space filling bearings,
and could this explain the extreme weakness to shear de-
formation of fault zones [14], and could it in some way
relate to the appearance of seismic gaps?
In summary, we have demonstrated that local rotating
bearings play an important role in shear band formations.
The bearing state is favored in shear bands because it sig-
nificantly reduces shear stiffness. Outside shear bands the
packing is denser. Shear band failures lead to a seismic
activity distribution that is similar to the characteristic dis-
tribution in tectonic fault zones. The reduced shear stiff-
ness in the bearing state leads to a stress orientation that
reminds one of that observed at the San Andreas Fault.
Fragmentation of blocks in tectonic faults may provide a
route to formation of local space-filling bearings which
may be connected to the appearance of seismic gaps.
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