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Nonlinearly Saturated Dynamical State of a Three-Wave Mode-Coupled Dissipative System
with Linear Instability

Y. S. Dimant*
Laboratory of Plasma Studies, Cornell University, Ithaca, New York 14853

(Received 9 June 1999)

Linearly unstable dissipative systems with quadratic nonlinearity occurring in plasma physics, optics,
fluid mechanics, etc. are often modeled by a general set of three-wave mode-coupled ordinary differ-
ential equations for complex variables. Bounded attractors of the set approximate nonlinearly saturated
turbulent states of real physical systems. Exact criteria for boundedness of the attractors are found.
Fundamentally different kinds of asymptotic behavior of the wave triad are classified in the parameter
space and quantitatively assessed.

PACS numbers: 05.45.Ac, 02.60.Lj, 42.65.–k, 52.35.Mw
Dissipative nonlinear systems are widely present in
many areas of science and technology [1]. Among
them, rather common are systems with linear instabilities
saturated by nonlinearity [2]. Understanding this process
and finding quantitative characteristics of the saturated
dynamical state represents a fundamental physical prob-
lem, which is often very complicated mathematically.
However, the analysis may be simplified in cases when
linearly unstable systems evolve to turbulent states with a
restricted number of dominant wave perturbations [2,3].
Such nonlinearly saturated states can be modeled by
attractors of truncated sets of coupled ordinary differential
equations (“flows” [1]). For systems with a quadratic
nonlinearity, three-wave models may reasonably describe
key features of actual turbulence, especially if the systems
are close to equilibrium. In the present Letter we study a
three-wave model given by Eq. (1), which represents the
most typical example of such a system. This or equivalent
sets of equations arise in plasma physics [2], nonlinear
optics [4], fluid mechanics [5], etc. In our case, this set
of equations has been intended for modeling nonlinear
saturation of dissipative low-frequency instabilities in the
ionosphere [6,7]. The general results reported here are
applicable to any problems reducible to this model.

Not far from the threshold of linear instability, when the
energy level of saturated turbulence is anticipated to be
reasonably low [7], dynamical behavior of three coupled
harmonic waves in a quadratically nonlinear dissipative
system is described by a set of three equations:

dhj

dt
1 ivjhj 2 gjhj � rjh

�
j21h�

j11 (1)

with j � 1, 2, 3, �· · ·�j13 � �· · ·�j . Complex variables hj

represent time-dependent amplitudes of spatial Fourier
waves with given wave vectors kj which are resonantly
coupled,

P3
i�1 ki � 0. Real linear wave frequencies

vj�kj� and growth (damping) rates gj�kj� are determined
by specific dispersion relations. Mode-coupling coeffi-
cients rj (also functions of ki) are generally complex. In
many physically interesting cases, the complex arguments
of rj differ by 0, 6p [2–6]. In all these cases, via renor-
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malization of variables, the mode-coupling coefficients rj

can be made real, which is implied below.
Asymptotic solutions at sufficiently large time t (i.e.,

attractors) depend strongly upon the parameters of the
system and may also depend upon the initial conditions.
In a linearly unstable situation when at least one gj in
(1) is positive, there may be either bounded or unbounded
asymptotic solutions for amplitudes of the interacting
modes. Bounded solutions at t ! ` mean that there is
nonlinear saturation of the instability via mode coupling.
Although some properties of attractors of (1) have been
studied before in particular cases [2–6], general issues
crucial for the physics of nonlinear processes have not
been addressed. Among the key questions are the follow-
ing. What are the exact criteria for bounded asymptotic
solutions? What are the dynamical properties of the
corresponding attractors? What are the average energetic
characteristics of the nonlinearly saturated state?

All these questions are addressed in the present Letter.
For the general system (1) we have found exact analyti-
cal expressions for the full domain of parameters that pro-
vides saturation of the instability (saturation domain). We
have also found an exact bifurcation surface separating two
fundamentally different kinds of attractors. All analytical
results have been checked numerically. The combination
of analytical and numerical techniques has enabled us to
classify in the parameter space different regimes of the at-
tractor behavior and estimate the average energetic charac-
teristics of the asymptotic solutions. Details of the general
analysis, as well as application to a specific ionospheric
problem [6,7], will be presented elsewhere.

Nonlinear saturation of the instability is possible only
if all rj are not of the same sign, otherwise explosive
regimes eventually take place [2]. Without loss of gen-
erality, we may set r1,2 , 0, r3 . 0. As shown below,
bounded attractors may exist if only mode 3 is linearly un-
stable. Indeed, in a bounded asymptotic quasisteady state,
for quantities averaged over a sufficiently long time (de-
noted by angular brackets), we have from (1)

gj

rj
�jhjj

2� � 2�Re�h1h2h3�� , (2)
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so that all three ratios �gj�rj� must be of the same sign.
Two linearly unstable modes usually cannot be stabilized
by mode coupling with only one linearly stable mode, so
that a necessary condition for a bounded attractor is given
by g3 . 0, g1,2 , 0. A full set of necessary and sufficient
conditions is discussed below.

Equation (1) for complex variables hj can be trans-
formed to equations for real variables. By proper renor-
malization, the total number of parameters (nine) can be
reduced to three. In order to keep the initial symme-
try of (1), we do this in a form different from the con-
ventional one [2]. Introducing a positive constant Wg �
� 1

2

P3
j�1�gj 2 gj11�2�1�2, we renormalize the time, t �

Wgt, and define dimensionless parameters

D �
1

Wg

3X
j�1

vj , s �
1

Wg

3X
j�1

gj , (3a)

C � arccos

µ
2g3 2 g1 2 g2

2Wg

∂
. (3b)

Parameter D characterizes the total frequency mismatch
from the exact linear-frequency resonance

P3
j�1 vj � 0.

Parameter s characterizes the exponential rate of contrac-
tion or expansion of the elementary phase volume in the
dissipative system [1]. Introducing dimensionless growth
(damping) rates

gj�s, C� �
2gj

Wg

�
2
3

�s 1 2 cosCj� ,

where Cj � C 2
2p

3 � j 2 3�, and real variables yj , X,
Y ,

yj �
P

2W2
grj

jhj j
2, X 1 iY �

P

W3
g

h1h2h3 , (4)
where P � 8r1r2r3 . 0, y1,2 # 0, y3 $ 0, we obtain
from (1) a five-dimensional flow

dyj

dt
� gj�s, C�yj 1 X ,

dX
dt

� sX 1 DY 1
1
2

�y2y3 1 y3y1 1 y1y2� , (5)

dY
dt

� sY 2 DX ,

with the integral of motion X2 1 Y2 � y1y2y3; see (4).
There are two fundamentally different regimes of the

asymptotic bounded solutions of Eqs. (5): (i) with sta-
tionary amplitudes of all modes (sink [1]) and (ii) with
time-varying amplitudes: limit cycles or chaotic (strange)
attractors. In the regime (i), the stationary amplitudes
are given by yjst � 2Xst�gj , Yst � pXst, Xst � 2�1 1

p2�g1g2g3, where p � D�s. For the original variables
hj�t�, the corresponding solution is given by hj�t� �
jhjjst exp�2i�vj 2 pgj�t 1 iwj0�, where

jhjj
2
st � �1 1 p2�

gj11gj21

rj11rj21
, (6)

and constant phase shifts wj0 are locked by relation
tan�

P3
j�1 wj0� � p. Analysis of this solution shows that

it forms a stable attractor in a domain of parameters
constrained by relations: jCj , p�3,

s3�C� , s , s4�C� at 0 , jCj ,
p

6
, (7a)

s3�C� , s , s1,2�C� at
p

6
, jCj ,

p

3
(7b)

(see Fig. 1a), and jDj . D0�s, C� (see Fig. 1b),
D0 � jsj

"
5s3 1 4 cos3C 2 6s

p
4s2 1 4s cos3C 1 1

3�s3 2 6s 2 4 cos3C�

∏1�2

. (8)
Here s3�C� � 22 cosC, s1,2�C� � 22 cos�jCj 2
2p

3 �,

s4�C� � 2
p

2 cos

∑
1
3
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µ
cos3C
p

2

∂
2

2p

3

∏
.

The surfaces s � s1,2,3�C� correspond to g1,2,3 � 0, re-
spectively. The associated constraints express the fact
that modes 1 and 2 are linearly stable and mode 3 is
linearly unstable. Bifurcation surface jDj � D0�s, C�,
where D0 ! ` at s � s4�C�, gives the boundary of sta-
bility for the above stationary solution. Numerical calcula-
tions show that the stationary solution (6) under constraints
(7) and (8) is the only attractor of the system, regardless
of the initial conditions (i.e., one basin of attraction [1]).

For jDj , D0�s, C�, no stable solutions with con-
stant amplitudes exist, and all wave amplitudes are
time varying. There are no exact analytic solutions
for them. However, the exact domain of parameters
where time-varying amplitudes are necessarily bounded
can be found by using the following approach. For
sufficiently large wave amplitudes, jyjj ¿ 1, most of
the time the value of jXj is large compared to jgjyjj
and jY j. To the zeroth-order approximation, the small
terms may be neglected and Eqs. (5) can be analyti-
cally solved [2]. The corresponding solution describes
nonlinear oscillations of mode envelopes with ampli-
tudes of oscillations inversely proportional to their period.
These oscillations can be expressed in terms of the
Weierstrass functions with two constant parameters. In
the first-order approximation with finite values of gj ,
these parameters are no longer constants, but adiabatically
slowly vary with time. By using a two-timing procedure,
one can obtain the corresponding evolutional equations
and study their attractors. In the case under study, there
can be only exponentially growing or damping mode
amplitudes. The domain of parameters corresponding to
exponentially damping oscillations is just the saturation
domain for (1). A similar approach can be applied to
finding saturation domains for other nonlinear systems.
Note that the actual asymptotic regime in the saturation
domain is given by sufficiently low-amplitude, long-peri-
odic temporal variations that lie beyond the scope of the
above adiabatic approximation.
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FIG. 1. Stability domain in the space of reduced parameters; see (3). (a) Constraints in the s-C plane; see (7) and (9).
(b) Bifurcation surface between the sink and time-varying solutions; see (8).
Implementing the above procedure, we obtain that at
jDj , D0�s, C� the asymptotic time-varying solutions are
bounded under constraints (7), where s4�C� is replaced by
another, parametrically defined function s5�C�,

s5�C� � 2

∑
p

3 sin

µ
jCj 1

2p

3

∂
R�k� 2 cosC

∏
,

C � 6 arctan

∑ p
3 �1 2 k2� �1 2 R�k��

�1 1 k2�R�k� 1 k2 2 1

∏
. (9)

Here R�k� � E�k��K�k�, where K�k� and E�k� are the
complete elliptic integrals of the 1st and 2nd kind, respec-
tively. The boundary s � s5�C� (Fig. 1a) is composed of
624
two smooth symmetric curves which exponentially closely
converge to axis C � 0 corresponding to the degenerate
case of g1 � g2 [3].

Numerical calculations for asymptotic temporal behav-
ior of wave amplitudes at jDj , D0�s, C� have fully con-
firmed all these results. In particular, in the area between
the two converging parts of the boundary s � s5�C�, the
wave amplitudes nonlinearly oscillate and exponentially
grow with no bound [8], following the adiabatic scenario
described above; see Fig. 2a. The exponential growth rate
tends to zero on approaching the boundary. Within the
saturation areas we have bounded only asymptotic solu-
tions whose character and average amplitudes strongly
FIG. 2. Examples of oscillating asymptotic solutions (solid curves) with the corresponding stationary values (dashed lines); see (6).
Vertical: dimensionless amplitudes yj , ordered according to y1 # y2 # 0 # y3; horizontal: dimensionless time t. (a) C �
0.083, s � s5�C� 1 0.02 	 20.9354, D � 0; (b) C � 0.0409, s � s5�C� 2 0.01 	 21.111, D � 0.5D0�s, C� 	 0.6445;
(c) C � p�6, s � 21, D � D0�s, C� 2 0.01 	 0.739; (d) C � 0.75, s � s3�C� 1 0.01 	 21.4534, D � 0; (e) C � 0.75,
s � s1�C� 1 0.005 	 20.356, D � 0; (f ) C � p�6, s � 21, D � 0.4.
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FIG. 3. (a) Example of chaotic asymptotic solution, arranged similar to Fig. 2 with (b) the corresponding strange attractor in the
phase space: C � p�6, s � 21, and D � 0.
vary depending upon the position in the three-dimensional
parameter space, but with no observed dependence on the
initial conditions.

Near all boundaries, including the bifurcation sur-
face jDj � D0�s, C�, nonlinearly saturated oscillations
have simple periodic character. Near the boundaries
s � s5�C� (Fig. 2b) and jDj � D0�s, C� (Fig. 2c),
such oscillations occupy rather thick continuous volumes
in the parameter space. By contrast, periodic solutions
near the boundaries s � s1,2�C� are localized in very
thin layers. Saturated temporal variations have here the
character of long-periodic sawtooth oscillations of the
largest wave amplitude with short-time bursts of two
smaller amplitudes; see Figs. 2d and 2e. The largest
amplitude corresponds to the mode whose growth or
damping rate is close to zero; see Eq. (2). The amplitude
of sawtooth oscillations is inversely proportional to their
period; the latter increases as the corresponding boundary
is approached. On passing to the deep inner part of the
saturation domain, temporal behavior of wave amplitudes,
through more complex limit cycles (Fig. 2f), transforms to
chaotic (Fig. 3). Subdomains of parameters corresponding
to different kinds of attractors may have a complicated
structure [9]. This issue and fractal properties of strange
attractors [1,3] need additional study.

Energetic characteristics of the nonlinearly saturated
state can be estimated via average oscillation amplitudes
�jhjj

2� [see Eq. (2)] by comparing them with the station-
ary amplitudes jhjj

2
st given by Eq. (6). Computations

show that near all boundaries of the saturation domain
for time-varying solutions, excluding s � s5�C�,
we have �jhjj

2� 	 jhjj
2
st; very close to s � s5�C�,

�jhjj
2� ¿ jhjj

2
st. In the interior of the domain, we have

�jhjj
2� 
 jhjj

2
st.

Analysis of applicability of the truncated three-wave
model to real systems and self-consistent determination of
the preferred wave triad should be done with application to
specific physical problems. Such analysis for ionospheric
instabilities [6] shows that a background of initially chaoti-
cally excited waves may really evolve to a dynamical struc-
ture resembling a wave triad with preferred wave vectors
kj [7]. There is a tendency for kj to be located at a margin
of linear stability for the most intense wave, with the maxi-
mum permissible value of the corresponding jhjjst (often
at a sink regime, jDj . D0). Some of these features may
hold in other problems.
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