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In this Letter we study the NP-complete vertex cover problem on finite connectivity random graphs.
When the allowed size of the cover set is decreased, a discontinuous transition in solvability and typical-
case complexity occurs. This transition is characterized by means of exact numerical simulations as well
as by analytical replica calculations. The replica symmetric phase diagram is in excellent agreement
with numerical findings up to average connectivity e, where replica symmetry becomes locally unstable.

PACS numbers: 64.60.– i, 02.10.Eb, 05.20.–y
Imagine you are director of an open-air museum situ-
ated in a large park with numerous paths. You want to put
guards on crossroads to observe every path, but in order to
economize costs you have to use as few guards as possible.
Let N be the number of crossroads and X , N the number
of guards you are able to pay. Then there are � N

X � possibili-
ties of putting the guards, but the most “configurations”
will lead to unobserved paths. Deciding whether there ex-
ists any perfect solution or finding one can thus take a time
growing exponentially with N . In fact, this problem is one
of the six basic NP-complete problems [1], namely, vertex
cover (VC). It is widely believed that no algorithm can be
found which solves our problem substantially faster than
an exhaustive search for any configuration of the paths.

Similar combinatorial decision problems have been
found to show interesting phase transition phenomena.
These occur in their solvability and, even more surpris-
ingly, in their typical-case algorithmic complexity, i.e.,
the dependence of the median solution time on the system
size [2]. For example, in satisfiability (SAT) problems
a number of Boolean variables has to simultaneously
satisfy many logical clauses. When the number of these
(randomly chosen) clauses exceeds a certain threshold, the
solvability of the full problem undergoes a sharp transition
from almost always satisfiable to almost always unsatis-
fiable [3]. The instances which are hardest to solve are
found in the vicinity of the transition point. Far away from
this point the solution time is much smaller, as a formula
is either easily fulfilled or hopelessly over-constrained.
The typical solution times in the under-constrained phase
are even found to depend only polynomially on the system
size. Recently, insight coming from a statistical mechanics
perspective on these problems [4] has led to a fruitful
cooperation with computer scientists, and has shed some
light on the nature of this transition [5]. Frequently, the
methods of statistical mechanics allow one to obtain more
insight than the classical tools of computer science or
discrete mathematics.

This is also true for the above mentioned VC problem.
After having introduced the VC model and reviewed some
previously known rigorous results, we present numeri-
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cal evidence for the existence of a phase transition in its
solvability which is connected to an exponential peak in
the typical-case complexity. Because of the much sim-
pler geometrical structure, many features of this transition
can be understood much more intuitively than for SAT. In
addition, we will see that the replica symmetric [6] the-
ory correctly describes the phase transition up to an av-
erage connectivity e. This is a fundamental difference to
previously studied models with discontinuous transitions;
see [7] for the example of 3-satisfiability where replica
symmetry breaking is necessary to calculate the transition
threshold.

Let us reformulate our problem in a mathematical way:
Take any graph G � �V , E� with N vertices i [ V �
�1, 2, . . . , N� (the crossroads in the above example) and
edges �i, j� [ E , V 3 V (the paths). We consider undi-
rected graphs, so with �i, j� [ E we also have � j, i� [ E.
A vertex cover is a subset Vvc , V of vertices such that
for all edges �i, j� [ E there is at least one of its end
points i or j in Vvc (the path is observed). We call the
vertices in Vvc covered, whereas the vertices in its comple-
ment V n Vvc are called uncovered. Please note that the
VC of a disconnected graph is consequently given by the
union of the VCs of its connected components.

Also partial VCs U , V are considered, where there
are some uncovered edges �i, j� with i ” U and j ” U.
The task of finding the minimum number of uncovered
edges for given graph G and the cardinality jUj � X is an
optimization problem. We have already mentioned that the
corresponding decision problem, if a VC of fixed cardinal-
ity X does exist or not, belongs to the basic NP-complete
problems.

In order to be able to speak of typical or average cases,
we have to introduce some probability distribution over
graphs. We investigate random graphs GN ,c�N with N
vertices and edges �i, j� (with i fi j) which are drawn ran-
domly and independently with probability c�N . Thus the
expected edge number equals � N

2 �c�N � cN�2 1 O�1�.
The average connectivity c remains finite in the limit
N ! ` of infinitely large graphs. For c , 1, these
graphs are known to be decomposed into O�N� connected
© 2000 The American Physical Society
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components of typical size O�1�, whereas for c . 1 a
giant component appears which unifies O�N� vertices [8].
For a more recent and complete introduction see [9].

As an element of a VC Vvc typically covers O�c� edges,
the minimal cover size Xmin is also expected to be of
O�N�, Xmin � xN ,cN . In fact, there are rigorous lower
and upper bounds on xN ,c which are valid for almost all
random graphs. To our knowledge, the best bounds are
given in [10,11]; see Fig. 3 (below) for a comparison with
our results. The exact asymptotics for large connectivities
c ¿ 1 is also known; Frieze proved that [12]

xN ,c � 1 2
2
c

�logc 2 log logc 2 log2 1 1� 1 o

µ
1
c

∂

(1)

for almost all graphs GN ,c�N , N ! `.
It is, however, not clear, if a sharp threshold xc�c� �

limN!` xN ,c does exist at finite c, with the overbar denot-
ing the average over the random graph ensemble at fixed
N and c. In order to get some intuition on this point we
have started our work with exact numerical simulations.
Analytic results are presented below.

Using an exact branch-and-bound algorithm [13,14], all
optimal configurations at fixed X are enumerated: As each
vertex is either covered or uncovered, there are � N

X � pos-
sible configurations which can be arranged as leaves of a
binary (backtracking) tree. At each node of the tree, the
two subtrees represent the subproblems where the corre-
sponding vertex is either covered or uncovered. A subtree
will be omitted if its leaves can be proven to contain less
covered edges than the best of all previously considered
configurations. The order of the vertices within the levels
of the tree is given by their current connectivity; i.e., only
neighbors are counted which are not yet included in the
cover set. Thus, the first descent into the tree is equiva-
lent to the greedy heuristic which iteratively covers ver-
tices by always taking the vertex with the highest current
connectivity.

The first results are exposed in Fig. 1: The probability
of finding a vertex cover of size xN in a random graph
GN ,c�N is displayed for c � 2 and several values of N ,
analogous results have been obtained for other values of c.
The drop of the probability from one for large cover sizes
to zero for small cover sets obviously sharpens with N , so
that a jump at a well-defined xc�c� is to be expected in
the large-N limit: for x . xc�c� almost all random graphs
with cN edges are coverable with xN vertices, below xc�c�
almost no graphs have such a VC. Figure 1 also shows the
minimal fraction e of uncovered edges as a function of x
for the partial covers. It vanishes for x . xc�c�, whereas
it remains positive for x , xc�c�.

It is also interesting to measure the median computa-
tional effort, as given by the number of visited nodes in
the backtracking tree, with dependence on x and N . The
curves, which are given in Fig. 2, show a pronounced
peak near the threshold value. Inside the coverable phase,
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FIG. 1. Probability Pcov �x� that a cover exists for a random
graph (c � 2) as a function of the fraction x of covered ver-
tices. The result is shown for three different system sizes
N � 25, 50, 100 (averaged over 104 –103 samples). Lines are
guides to the eyes only. In the left part, where Pcov � 0, the
energy e (see text) is positive. The inset enlarges this result of
the region 0.3 # x # 0.5.

x . xc�c�, the computational cost is growing only linearly
with N , and in many cases the greedy heuristic is already
able to cover all edges by covering xN vertices. Below the
threshold, x , xc�c�, the computational effort is clearly
exponential in N , but becomes smaller and smaller if we
go away from the threshold. This easy-hard-easy scenario
resembles very much the typical-case complexity pattern
of 3SAT [5], and deserves some analytical investigation.
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FIG. 2. Time complexity of vertex cover: Median number of
nodes visited in the backtracking tree as a function of the frac-
tion x of covered vertices for graph sizes N � 20, 25, 30, 35, 40
(c � 2). The inset shows the region below the threshold with
logarithmic scale, including also data for N � 45, 50. The fact
that in this representation the lines are equidistant shows that the
time complexity grows exponentially with N .
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To achieve this, we use the strong similarity between
combinatorial optimization problems and statistical me-
chanics. In the first case, a cost function depending on
many discrete variables has to be minimized; e.g., the num-
ber of uncovered edges is such a cost function for vertex
cover. This is equivalent to zero temperature statistical
mechanics, where the Gibbs weight is completely concen-
trated in the ground states of the Hamiltonian. As the
local variables for VC are binary because a vertex is ei-
ther covered or uncovered, we may give a canonical one-
to-one mapping of the vertex cover problem to an Ising
model: for any subset U , V we set Si � 11 if i [ U
and Si � 21 if i ” U. The edges are encoded in the ad-
jacent matrix �Jij�: an entry equals 1 iff �i, j� [ E, and
Jij � 0 else. �Jij� is thus a symmetric random matrix
with independently and identically distributed entries in its
lower triangle. The Hamiltonian, or cost function, of the
system counts the number of edges which are not covered
by the elements of U,

H �
X
i,j

JijdSi ,21dSj,21 , (2)

and has to be minimized under the constraint jUj � xN ,
which, in terms of Ising spins, reads

1
N

X
i

Si � 2x 2 1 . (3)

The resulting ground state energy egs�c, x� equals zero iff
the graph is coverable with xN vertices.

We skip the details of the calculation, as these go beyond
the scope of this Letter. A detailed technical description
will be presented elsewhere [15]. We mention only the
main steps.

(i) We introduce a positive formal temperature T
and calculate the canonical partition function Z �P

Cx
exp�2H�T � where the sum is over all configurations

�Si�i�1,...,N which satisfy (3).
(ii) We are interested in the disorder-averaged free-

energy density f�c, x� � 2 limN!` TN21lnZ, which we
calculate using the replica method, closely following the
scheme proposed in [16]. Within the replica symmetric
framework, this free energy self-consistently depends on
the order parameter P�m� which is the histogram of local
magnetizations mi � �Si�. �?� denotes the thermodynamic
average.

(iii) The ground states are recovered by sending T ! 0.
In this limit, one has to take care of the scaling of the
order parameter with T , which is different below and above
xc�c�. For a similar reasoning in the case of 3SAT see
also [7].

(iv) Both equations for x , xc�c� and x . xc�c� tend to
the same limit for x ! xc�c�. At the threshold, the result-
ing self-consistency equation can be solved analytically.

From this solution, many properties of the threshold VCs
can be read off. The first is, of course, the value of the
6120
threshold itself,

xc�c� � 1 2
2W �c� 1 W�c�2

2c
(4)

with the Lambert-W-function W [17]. The result for xc�c�
is displayed in Fig. 3 along with numerical data obtained
by a variant of the branch-and-bound algorithm. For rela-
tively small connectivities c perfect agreement is found.
We also have compared (4) with rigorous bounds obtained
from counting VCs for small connected components hav-
ing up to seven vertices, which are very precise for small
c (e.g., 0.999 997N vertices are taken into account for
c � 0.1). Also here, perfect coincidence was found.

For larger c systematic deviations of (4) from numerical
results occur, and it even violates the asymptotic form
(1). For c . e, the replica symmetric solution becomes
unstable, and we find a continuous appearance of a replica
symmetry broken solution; work is in progress on this
point [15]. We conjecture that the replica symmetric result
(4) is exact for c # e, whereas it gives a lower bound
for c . e [18]. Please note that this point is situated
well beyond c � 1 where the giant component appears.
Neither analytically nor numerically have we found any
influence of the giant component on the vertex covers.
This is significantly different from Ising models on random
graphs as studied in [19].

Besides the value of xc�c�, the replica symmetric solu-
tion also contains structural information. One important
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FIG. 3. Phase diagram: critical fraction xc of covered vertices
as a function of the edge density c. For x . xc�c�, almost all
graphs have VCs with xN vertices, while they have almost surely
no VC with x , xc�c�. The solid line shows our analytic result.
The rigorous bounds are given by dot-dashed [10], respectively,
dashed [11], lines. The vertical line is at c � e. The circles
represent the results of the numerical simulations. Error bars
are much smaller than symbol sizes. All numerical values were
calculated from finite-size scaling fits of xN ,c using functions
xN ,c � xc�c� 1 aN2b . The inset shows the threshold backbone
size bc as a function of c: analytical results are given by the
solid line, and numerical data by the error bars.
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phenomenon is a partial freezing of degrees of freedom.
For a given random graph, there exists typically an expo-
nential number of minimal VCs, thus the entropy density
is finite. On the other hand, a fraction b1�c� of the vertices
will be covered in all minimal VCs, thus forming a covered
backbone, other vertices will never be covered and are col-
lected in the uncovered backbone which has size b2�c�N :

b2�c� �
W�c�

c
,

b1�c� � 1 2
W�c� 1 W�c�2

c
.

(5)

In Fig. 3 the total backbone size bc�c� � b2�c� 1 b1�c�
is compared with numerical data, and again very good
agreement is found in the range of validity of replica
symmetry.

For small c, the uncovered backbone is large, which is
mainly due to isolated vertices which have to be uncovered
in minimal VCs. The simplest structures showing a cov-
ered backbone are subgraphs with three vertices and two
edges. In the minimal VC of this subgraph, the central
vertex is covered, thus belonging to the covered backbone,
the other two are uncovered, thus belonging to the uncov-
ered backbone. The simplest nonbackbone structures are
components with only two vertices and one edge, because
the vertices have no unique covering state.

These backbones appear discontinuously at the thresh-
old because inside the coverable phase the backbone is
empty. The proof is simple [x . xc�c� fixed].

(i) Assume that there is a nonempty uncovered back-
bone, with i being an element. Now take any minimal
cover V0. It can be extended by covering arbitrarily cho-
sen 	x 2 xc�c�
N vertices out of V n V0, e.g., vertex i,
which is a contradiction to our assumption.

(ii) Assume now a nonempty covered backbone, with i
being an element. Then i has to be an element of V0. As
the connectivity of i is almost surely smaller than or equal
to O�logN�, all uncovered neighbors of i can be covered
by some of the 	x 2 xc�c�
N covering marks (for N suffi-
ciently large), and i can be uncovered without uncovering
the graph. This is again a contradiction to our assumption.

To summarize, we have investigated the vertex cover
problem on random graphs by means of exact numerical
simulations and analytical replica calculations. A sharp
transition from a coverable to an uncoverable phase is
found by decreasing the permitted size of the cover set.
This transition coincides with a change of the typical-
case complexity from linear to exponential growth in N
and the discontinuous appearance of a frozen-in backbone.
The complete replica symmetric solution was given for
c , e, it is found to be in perfect agreement with numeri-
cal results. For c . e the behavior is less clear as replica
symmetry breaking occurs.

Also the behavior inside the coverable and the uncov-
erable phases is of some interest. There the use of varia-
tional techniques similar to those proposed in [7] could be
of great help.
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