Difference between Blocking and Néel Temperatures in the Exchange Biased Fe₃O₄/CoO System

P.J. van der Zaag,^{1,*} Y. Ijiri,^{2,3} J.A. Borchers,² L.F. Feiner,¹ R.M. Wolf,¹ J. M. Gaines,¹ R. W. Erwin,² and M. A. Verheijen¹

¹Philips Research Laboratories and CFT, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands

²NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899

³Oberlin College, Department of Physics, Oberlin, Ohio 44074

(Received 8 February 2000)

The blocking temperature $T_{\rm B}$ has been determined as a function of the antiferromagnetic layer thickness in the Fe₃O₄/CoO exchange biased system. For CoO layers thinner than 50 Å, T_B is reduced below the Néel temperature $T_{\rm N}$ of bulk CoO (291 K), independent of crystallographic orientation or film substrate (α -Al₂O₃, SrTiO₃, and MgO). Neutron diffraction studies show that T_B does not track the CoO ordering temperature and, hence, that this reduction in $T_{\rm B}$ does not arise from finite-size scaling. Instead, the ordering temperature of the CoO layers is *enhanced* above the bulk $T_{\rm N}$ for layer thicknesses ≤ 100 Å due to the proximity of magnetic Fe₃O₄ layers.

PACS numbers: 75.50.Ee, 61.12.Ld, 75.40.-s, 75.70.-i

The coupling between ultrathin antiferromagnetic (AF) and ferromagnetic (F) layers has received considerable attention lately [1], as field cooling through the antiferromagnetic ordering temperature, $T_{\rm N}$, may result in a shift of the hysteresis loop along the field axis by an amount $H_{\rm eb}$. This exchange biasing effect [2] is used currently to pin the magnetization in giant magnetoresistance (GMR) spin valves and is extensively studied as many aspects of this coupling between AF and F layers are still unresolved [3-6]. Thus far most work has focused on explaining the magnitude of H_{eb} [3–6]. Limited attention has been given to the temperature dependent aspects of H_{eb} , although these are highly significant for a deeper understanding of biasing [7-9] and are also relevant for applications [10].

In the most elementary consideration [2] one can derive an expression for H_{eb} by considering that reversing the F magnetization in an AF-F exchange biased system will require twice the energy of the exchange coupled bonds across the AF-F interface. Balancing this energy with the gain in Zeeman energy leads to the following expression:

$$H_{\rm eb} = \frac{n2J_{\rm ex}|S_{\rm F}||S_{\rm AF}|}{a^2\mu_0 M_{\rm F} t_{\rm F}},$$
 (1)

with *a* the lattice parameter, n/a^2 the number of exchange coupled bonds across the AF-F interface per unit area, J_{ex} the exchange constant, S_i the spin of either F or AF, μ_0 the vacuum permeability, $M_{\rm F}$ the magnetization of the F layer, and t_F the thickness of the F layer. From Eq. (1) one would expect the following: first, that the temperature dependence of H_{eb} is governed by the Brillouin-type temperature dependence of the AF (staggered) magnetization, since the AF layer has the lowest ordering temperature, and second, that H_{eb} vanishes at T_N of the AF material. However, in practice linear temperature dependencies are often found (which in polycrystalline AF layers may be understood on the basis of a distribution of grain sizes or exchange contributions [7-9]). Moreover, one finds at low antiferromagnetic layer thickness that the blocking temperature $T_{\rm B}$ (i.e., the temperature at which biasing vanishes) is smaller than the bulk T_N [11–15].

In this Letter we describe the effect of the variation of the antiferromagnetic layer thickness t_{AF} on T_B for the single-crystalline Fe₃O₄/CoO system. We have studied this system as CoO has a comparatively simple AF spin structure and has been studied extensively [16]. Moreover, high quality Fe₃O₄/CoO multilayers can be grown by molecular beam epitaxy [17]. Despite the limited CoO volume in these samples, high angle neutron diffraction is quite sensitive to the AF order because the multilayer geometry enhances and amplifies the scattering from these thin layers. Many studies have found that, for small t_{AF} , $T_{\rm B}$ is reduced below the bulk $T_{\rm N}$ of the AF material [11-15]. In addition, it has been reported that the ordering temperature of ultrathin antiferromagnetic oxide films is smaller than the bulk $T_{\rm N}$ for $t_{\rm AF} \lesssim 100$ Å [18–20]. Hence, it is widely believed that $T_{\rm B}$ follows $T_{\rm N}$ in AF/F exchange biased systems and that the reduction of $T_{\rm B}$ for small t_{AF} arises from finite-size scaling [11,13,14]. To test this, we have performed neutron diffraction measurements of the ordering temperature for CoO layers with small t_{AF} in exchange biased samples, for which we have also determined the blocking temperature by bulk magnetization techniques. Surprisingly, we find from neutron diffraction measurements that the ordering temperature of CoO in Fe₃O₄/CoO exchange biased systems is *larger* than the bulk $T_{\rm N}$ for small $t_{\rm AF}$ at which $T_{\rm B}$ is reduced. Thus the reduction in $T_{\rm B}$ is *not* the result of finite-size scaling.

 Fe_3O_4/CoO bilayers and multilayers were grown on (0001) α -Al₂O₃, (100) SrTiO₃, and (100) MgO substrates in an oxidic molecular beam epitaxy system, with CoO the first layer being deposited [17]. As verified by reflection high-energy electron diffraction (RHEED) and x-ray diffraction, the Fe_3O_4/CoO layers were epitaxial with a [111] orientation for the Al_2O_3 substrates and [100] orientation for the SrTiO₃ and MgO substrates. Measured rocking curve widths (FWHM) for the Al₂O₃, SrTiO₃, and MgO were $\approx 3^\circ$, $\approx 1.3^\circ$, and 0.35° , respectively. For the bilayers, the Fe₃O₄ layer thickness was held constant at 120 ± 9 Å, while for the multilayers, the Fe₃O₄ layer thickness was 100 Å and t_{CoO} was 17, 30, 40, or 100 Å. Further details about the growth are given elsewhere [17]. Magnetic measurements were performed in a SQUID magnetometer after field cooling from 350 K in a 4400 kA/m field through the $T_{\rm N}$ of bulk CoO [21]. Neutron diffraction studies were performed at the NIST Center for Neutron Research on the BT-9 and BT-2 tripleaxis spectrometers using a neutron wavelength of 2.35 Å. In these studies, the Fe_3O_4/CoO multilayers were used to enhance the scattered intensity. Samples for crosssectional high-resolution transmission electron microscopy (HRTEM) were prepared using mechanical polishing and argon-ion milling. HRTEM was done at 300 kV.

Figure 1 shows the exchange biasing field as a function of temperature T for a [111] oriented 125 Å Fe₃O₄/33 Å CoO bilayer grown on α -Al₂O₃. As reported previously for the Fe_3O_4/CoO system [12,21], the temperature dependence of H_{eb} is linear and H_{eb} vanishes at T_B , which is 220 ± 10 K in this case. From this and similar data, $T_{\rm B}$ was determined as a function of CoO layer thickness, t_{CoO} , for both [111] and [100] oriented bilayers as well as the [100] oriented multilayers. The results are shown in Fig. 2. The inset displays $T_{\rm B}$ for small $t_{\rm CoO}$ and shows that $T_{\rm B}$ depends linearly on $t_{\rm CoO}$ for $t_{\rm CoO} < 20$ Å. For $t_{\rm CoO} > 20$ Å the dependence of $T_{\rm B}$ on $t_{\rm CoO}$ is nonlinear and, at 92 Å, $T_{\rm B}$ reaches 291 K, the ordering temperature of bulk CoO. For $t_{CoO} \leq 50$ Å, T_{B} is smaller than T_{N} of bulk CoO, as also reported for other exchange biased systems [11,14,15,19]. In addition, we find that $T_{\rm B}$ does

FIG. 1. The exchange biasing field $H_{\rm eb}$ versus temperature *T* for a [111] oriented 125 Å Fe₃O₄/33 Å CoO bilayer. Note the linear dependence of $H_{\rm eb}$ on *T*. The biasing vanishes at the blocking temperature $T_{\rm B} = 220 \pm 10$ K. The inset shows the hysteresis loop at 5 K after cooling from 350 K in a field of 4400 kA/m.

not depend on the substrate (Al_2O_3 , $SrTiO_3$, or MgO) or on its orientation ([111] or [100]).

To test the hypothesis that the reduction of $T_{\rm B}$ at small t_{CoO} is due to a finite-size scaling and a related reduction of the ordering temperature of ultrathin CoO layers, neutron diffraction experiments were performed to measure directly the ordering temperature of CoO in Fe₃O₄/CoO multilayers. As the $\{111\}$ class of reflections has the strongest contribution from the CoO AF order and the CoO (111) reflection can be very well distinguished from the broader Fe_3O_4 (111) reflection [22,23], this (111) reflection was studied as a function of temperature for four Fe_3O_4/CoO multilayers. Figure 3 shows the change in intensity of this (111) reflection as a function of T for the $(100 \text{ Å Fe}_3\text{O}_4/30 \text{ Å CoO})_{\times 50}$ multilayer. Note that since the transition is smeared it is difficult to define a precise transition temperature marking the onset of the CoO antiferromagnetic order. Nevertheless, these data clearly show, when we take the temperature where the intensity I deviates from its high-temperature limiting value as the ordering temperature, that for the 30 Å CoO layer (Fig. 3b) this temperature is *increased* well above the $T_{\rm N} = 291$ K of bulk CoO, to around 450 ± 15 K. Using another criterion for ordering such as the crossing point of the two lines in Fig. 3b would not change the conclusion that $T_{\rm N}$ is substantially increased above 291 K.

In principle the Fe₃O₄/CoO superlattice undergoes only one true phase transition, which occurs near the $T_{\rm C}$ of Fe₃O₄. While the Co spins near the interface are polarized by exchange coupling to the Fe moments, the Co spins in the center of the CoO layer initially remain disordered. However, with decreasing temperature AF correlations develop throughout the CoO layer, driven by the AF coupling [22]. Thus we define the effective $T_{\rm N}$ of the CoO layer as the temperature at which the Co lattice develops a measurable staggered magnetization. The neutron diffraction studies on the other multilayers show that this effective $T_{\rm N}$

FIG. 2. Blocking temperature $T_{\rm B}$ as a function of the CoO layer thickness $t_{\rm CoO}$ in Fe₃O₄/CoO bilayers for two orientations. The curve is a guide to the eye. Note that there is no measurable influence of the substrate used: Al₂O₃ (•), SrTiO₃ (•), or MgO (\Box). The inset shows that the $T_{\rm B}$ data display a linear dependence on $t_{\rm CoO}$ for $t_{\rm CoO} < 20$ Å.

FIG. 3. The intensity *I* of the (111) reflection as a function of *T* for a (100 Å Fe₃O₄/100 Å CoO)_{×50} (a) and a (100 Å Fe₃O₄/30 Å CoO)_{×50} (b) multilayer. Note the drop in *I* around 410 K in the latter. (The various symbols denote the results from different experimental runs.)

exceeds 291 K for $t_{CoO} < 100$ Å, approaching the bulk value as t_{CoO} is increased. In Fig. 4 the results for T_N are given together with those for T_B plotted versus AF layer thickness, t_{CoO} . This figure clearly shows that the reduction of T_B at $t_{CoO} < 50$ Å *cannot* be due to a reduction in T_N , as T_N is *increased* in this regime. This observed increase in T_N for $t_{CoO} < 50$ Å arises from magnetic coupling and proximity to the ferrimagnetic Fe₃O₄, which in

FIG. 4. Both the measured CoO ordering temperatures, T_N (\diamond symbols) and blocking temperatures (\bullet , \circ , and \Box symbols) are given versus the thickness of the CoO layer for the Fe₃O₄/CoO system. Note the divergence of the two curves, indicating that the measured reduction of T_B is not due to a reduction of the ordering temperature at low t_{CoO} .

bulk orders at $T_{\rm C} = 858$ K. The data can be understood within the context of a mean-field model in which the two disparate ordering temperatures approach each other as a function of the relative Fe₃O₄ and CoO layer thickness which alters the coupling experienced by the Co and Fe spins in the center of each layer [22]. As an independent experimental test, we also measured $T_{\rm N}$ for a 30 Å CoO layer in a (30 Å CoO/18 Å MgO) $_{\times 50}$ multilayer grown on (100) MgO. In this case, due to the absence of a magnetic layer, $T_{\rm N}$ was not increased but was approximately equal to the bulk value of 291 K. This is similar to the situation for ultrathin metallic magnetic films, where the ordering temperature reaches the bulk value at 5-6 monolayers [24]. Note that, at a CoO layer thickness of ≈ 30 Å, $T_{\rm B}$ of a Fe₃O₄/CoO bilayer is already substantially reduced below the bulk T_N value (Figs. 1 and 2).

Since a reduction in the CoO ordering temperature cannot be responsible for the reduction in $T_{\rm B}$ as a function of decreasing AF thickness, we have considered alternative interpretations beyond finite-size scaling. At $t_{CoO} \leq 50$ Å the AF layers might be composed of magnetically isolated "islands" and consequently the reduced $T_{\rm B}$ could be the temperature at which these islands become superparamagnetic. However, there is no evidence for the existence of such islands in high-resolution TEM studies for a number of samples, as illustrated by the HRTEM image in Fig. 5 for a [111] oriented 140 Å $Fe_3O_4/10$ Å CoO bilayer grown on α -Al₂O₃. The variation in contrast is merely due to variation in thickness of the sample after argon ion milling. Crossed lattice fringes are visible throughout the entire Fe₃O₄/CoO bilayer, evidencing its epitaxial growth. In fact, a reduction of $T_{\rm B}$ by superparamagnetism would require unrealistically small

FIG. 5. High-resolution TEM image of a [111] oriented 140 Å $Fe_3O_4/10$ Å CoO bilayer grown on (0001) α -Al₂O₃.

islands. Superparamagnetic behavior occurs when $\tau =$ $\tau_0 \exp(KV/k_{\rm B}T)$ with τ the relaxation rate, τ_0 a constant of order 10^{-9} s, K the anisotropy constant, $V = A \times t_{AF}$, the volume of the island, where A is its surface area, and $k_{\rm B}$ Boltzmann's constant [25]. Thus one can calculate that $T_{\rm B} = [KA/k_{\rm B} \ln(10^9 \tau)]t_{\rm AF}$. From the inset of Fig. 2, we find experimentally that $T_{\rm B}/t_{\rm AF} \simeq 10 \text{ K/Å}$. With $K = 1.1 \times 10^7 \text{ J/m}^3$ [26] and taking $\tau \approx 10^2 \text{ s}$ for the time scale of the measurement of $T_{\rm B}$, we find that a match to the experimental $T_{\rm B}/t_{\rm AF}$ requires that A be $1.6 \times 1.6 \text{ Å}^2$. As this theoretical estimated size is unphysically small and as extensive TEM experiments do not show islands (e.g., up to 200 Å wide in Fig. 5), we believe that the reduction of $T_{\rm B}$ cannot be the result of superparamagnetic behavior.

It is also unlikely that the reduction of $T_{\rm B}$ stems from a reduction of the CoO anisotropy and the resulting inability of the CoO layer to sustain an AF domain wall as the temperature approaches $T_{\rm N}$. First, in CoO the anisotropy is dominated by the Co²⁺ single ion anisotropy, which does not depend on layer thickness. Second, calculations show that at 0 K the width of an AF domain wall parallel to the interface already exceeds $t_{\rm CoO}$ for the CoO layers with $t_{\rm CoO} \leq 30$ Å, which still exhibit biasing [27].

Although we do not have an explanation for the surprising combination of an enhanced $T_{\rm N}$ and a decreased blocking temperature $T_{\rm B}$, it is clear that this finding must serve as a touchstone for any theory of exchange biasing. A successful theory should be able to explain not only the magnitude of $H_{\rm eb}$ but also its temperature dependence, including the difference between $T_{\rm B}$ and $T_{\rm N}$.

In conclusion, we have demonstrated that $T_{\rm B}$ is not a measure of the CoO ordering temperature in this exchange biased system. Specifically, for ultrathin CoO layers in a Fe₃O₄/CoO multilayer, $T_{\rm B}$ decreases with decreasing

CoO layer thickness while the effective Néel temperature increases due to magnetic proximity effects. Although observed in many systems, the reduction of $T_{\rm B}$ with decreasing $t_{\rm AF}$ thus does not result from finite-size scaling and remains a topic for further study.

We thank J. C. Slonczewski and R. Coehoorn for stimulating discussions.

*Corresponding author.

Electronic address: P.J.van.der.Zaag@philips.com Present address: Philips Research Laboratories, Cross Oak Lane, Redhill, Surrey RH1 5HA, U.K.

- See for recent reviews J. Nogués and I.K. Schuller, J. Magn. Magn. Mater. **192**, 203 (1999); A.E. Berkowitz and K. Takano, J. Magn. Magn. Mater. **200**, 552 (1999).
- [2] W. H. Meiklejohn and C. P. Bean, Phys. Rev. 102, 1413 (1956); 105, 904 (1957).
- [3] D. Mauri et al., J. Appl. Phys. 62, 3047 (1987).
- [4] A. P. Malozemoff, J. Appl. Phys. 63, 3874 (1988).
- [5] N.C. Koon, Phys. Rev. Lett. 78, 4865 (1997).
- [6] T. C. Schulthess and W. Butler, Phys. Rev. Lett. 81, 4516 (1998).
- [7] C. Tsang and K. Lee, J. Appl. Phys. 53, 2605 (1982).
- [8] S. Soeya et al., J. Appl. Phys. 76, 5356 (1994).
- [9] M. D. Stiles and R. D. McMichael, Phys. Rev. B 60, 12950 (1999).
- [10] T. Lin et al., IEEE Trans. Magn. 31, 2585 (1995).
- S.S.P. Parkin and V.S. Speriosu, *Magnetic Properties* of Low Dimensional Systems II, edited by L.M. Falicov, F. Mejía-Lira, and J.L. Morán-López, Springer Proceedings in Physics Vol. 50 (Springer, Berlin, 1990), pp. 110–120.
- [12] P.J. van der Zaag et al., J. Appl. Phys. 79, 5103 (1996).
- [13] T. Ambrose and C. L. Chien, J. Appl. Phys. 83, 6822 (1998).
- [14] A.J. Devasahayam and M.H. Kryder, J. Appl. Phys. 85, 5519 (1999).
- [15] J. van Driel et al., J. Appl. Phys. (to be published).
- [16] D. Herrmann-Ronzaud, P. Burlet, and J. Rossat-Mignod, J. Phys. C 11, 2123 (1978).
- [17] R. M. Wolf *et al.*, Mater. Res. Soc. Symp. Proc. **341**, 23 (1994).
- [18] D. Alders et al., Europhys. Lett. 32, 259 (1995).
- [19] T. Ambrose and C.L. Chien, Phys. Rev. Lett. 76, 1743 (1996).
- [20] E.N. Abarra et al., Phys. Rev. Lett. 77, 3451 (1996).
- [21] P.J. van der Zaag et al., J. Magn. Magn. Mater. 148, 346 (1995).
- [22] J.A. Borchers et al., Phys. Rev. B 51, 8276 (1995).
- [23] Y. Ijiri et al., J. Appl. Phys. 83, 6882 (1998).
- [24] J. J. de Miguel et al., J. Magn. Magn. Mater. 93, 1 (1991).
- [25] A. H. Morrish, *The Physical Principles of Magnetism* (John Wiley & Sons, New York, 1965), pp. 360–363.
- [26] J. Kanamori, *Magnetism*, edited by G. T. Rado and H. Suhl (Academic, New York, 1963), Vol. 1, pp. 198–199.
- [27] P.J. van der Zaag, L.F. Feiner, R. Jungblut, Y. Ijiri, J.A. Borchers, and R.W. Erwin (unpublished).