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We present the first application of transition state theory to a system that evolves from an initial t
final state without time-reversal symmetry. The problem studied is the chaotic ionization of a hydrog
atom in crossed electric and magnetic fields. The stable manifolds of the transition state reve
fractal tiling which connects the geometrical properties of the tiling to the ionization rate, leading to
theoretical explanation for the computational and experimental observation of “prompt” and “delaye
electrons in this problem.

PACS numbers: 32.80.Rm, 31.50.+w, 32.60.+ i, 82.20.Db
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Transition state theory (TST), introduced by Eyring an
Polanyi [1,2] in 1931 as an early attempt to determine a
solute reaction rates, is too often considered the domain
the chemist or chemical physicist. However, the tran
tion state (TS) is actually a general property of dynamic
systems which involve an evolution from “reactants”
“products.” Such processes include, but are by no me
limited to, the ionization of atoms, the dissociation or r
action of molecules, and even the escape of an aste
from its orbit. Conventional TST [3,4] postulates the exi
tence of a minimal set of states that all reactive trajector
must pass through and which are never encountered by
nonreactive trajectories. Thus, the TS is a hypersurface
no return. While, as noted, TST has been used mainly
chemical physics, it also offers considerable advantage
other problems, especially those whose dynamics are n
linear or chaotic, that involve some form of progressio
from an initial to a final state.

In the particular problem studied in this Letter, one e
counters new challenges not usually found in chemi
problems. The resolution of these challenges has imp
tant ramifications for the problem at hand, which is
great experimental interest, namely, the ionization of a h
drogen atom in crossed electric and magnetic fields [5
However, our findings go well beyond this particular sy
tem which we have chosen, in part, because it allows
to illustrate the key concepts with clarity. The specifi
peculiarity of the problem we solve is that it is not time
reversal symmetric [7].

In the experiments on the hydrogen atom in cross
electric and magnetic fields, the electric field is prese
intentionally so as to break the symmetry and thus
unleash the full complexity of the dynamics. This, an
similar systems, have confounded conventional treatme
of ionization dynamics mainly because the Lorentz for
leads to chaotic scattering [6,8,9] which was detect
through its quantum signature, Ericsson fluctuations [
In a previous paper, we have presented a computatio
study of this system and a number of novel featur
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were identified [10]. In particular, we found that phas
space is divided into three parts: a regular part,
“open” region from which electrons ionize promptly, an
a boundary region between the two from which “delaye
electrons ionize only after repeated encounters with
core region [11,12]. This behavior has recently be
observed experimentally [6].

In this Letter, we present the solution of this proble
using the transition state, and, in the process, extend
theory of the TS itself. Combining TST with moder
methods of nonlinear dynamics [13] enables us to use
dynamics to partition phase space. This partitioning is
fractal tiling [14] whose geometrical properties determin
the rate of ionization. More generally, our approac
also provides an excellent way to picture the scatteri
dynamics in a large class of experimentally importa
problems ranging from neutron stars and plasmas
excitonic systems [10].

Our strategy is first to find the TS in the absenc
of time-reversal symmetry and then use its stable a
unstable manifolds [13] to provide information abou
the progress of the transformation from reactants
products. The resulting TS is shown to be a bounda
in phase rather than configuration space and can be u
to investigate the fractal structure of the dynamics [1
which in turn determines the rate of ionization.

Theory.—In conventional systems with time-reversa
symmetry, the TS is constructed using a potent
energy surface [3,4]: One finds the periodic orbi
that connect the branches of the equipotentials. Th
projections in coordinate space, the so-called perio
orbit dividing surfaces (PODS), partition the coordina
space, and the PODS with minimum flux across it is t
TS. The equipotentials are time-reversal symmetry lin
i.e., the time development of the dynamical variabl
satisfy

q�2t 1 t0� � q�t 1 t0� ,

�q�2t 1 t0� � 2 �q�t 1 t0� ,
(1)
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where the trajectory touches the equipotential at time t0.
Clearly, this prescription fails in the presence of velocity-
dependent forces where it is not possible to define a
potential energy. Yet lines with analogous properties
to the equipotentials can be found, as we are about to
show. The TS is once again the projection of an unstable
periodic orbit that connects the “ time-reversal symmetry
lines” (see below). Its stable and unstable manifolds
partition phase space [13,15,16]. The volume interior to
the stable manifold corresponds to states that eventually
ionize, while that of exterior corresponds to states that
remain bound for all time. The intersections of this
manifold with a Poincaré surface of section yield a fractal
tiling [14] of the surface of section; geometrical properties
of this tiling are directly related to the rate of ionization.

In the following, we will first identify the time-reversal
symmetry lines, then we will present the associated
PODS, and finally outline the analysis of the fractal
partitioning of phase space yielding the ionization rate.

The Hamiltonian (in atomic units) in Cartesian coordi-
nates for the planar hydrogen atom in crossed electric and
magnetic fields is

H �
1
2

�p2
x 1 p2

y � 2
1
r

1

∑
vc

2
�xpy 2 ypx� 1

vc
2

8
�x2 1 y2� 2 Ex

∏
,

(2)

where r �
p

x2 1 y2, vc is the cyclotron frequency,
and E is the electric field strength. This model is
known to capture the dynamics of the most detailed
experiments to date [5]. The terms in the brackets are
the paramagnetic term, the diamagnetic term, and the
electric field interaction, respectively. The paramagnetic
term gives rise to the velocity-dependent forces. This
Hamiltonian has a single critical point that is usually
called the Stark saddle point [10].

The Coulomb singularity can be eliminated by regular-
ization [10] in semiparabolic coordinates �u, y� [which are
defined by x � �u2 2 y2��2 and y � uy] and the result-
ing Hamiltonian becomes

K �
2
V

�
1
2

�p2
u 1 p2

y� 1
1
2

�u2 1 y2�

1

∑
1

4V2 �u2 1 y2� �upy 2 ypu�

1
1

32V4 �u2 1 y2�3 2
´

2V3 �u4 2 y4�
∏

. (3)

where V � v
21�3
c

p
22H and ´ � v

24�3
c E . The equa-

tions of motion can be transformed into a form which is
symmetric with respect to time reversal by the simple ex-
pedient of switching the identity of the momentum and
coordinate of one of the pairs of conjugate variables [17]
through the canonical transformation

y � Pw , Py � 2w . (4)

We choose to exchange the identity of �y, Py� as
opposed to �u, Pu� because the system ionizes in the
u direction, and thus we wish to retain u as one of
our dynamical variables. In this set of coordinates, the
time-reversal symmetry lines are obtained by setting the
velocities � �u � �w � 0� equal to zero, which results in

w2 2
u3

2V2 w 1

µ
u6

16V4 2
´u4

V3 1 u2 2
4
V

∂
� 0 .

(5)

Using these curves in place of the equipotentials enables
us to construct the TS’s.

Periodic orbits.—There are four periodic orbits that
connect the two branches of the time-reversal symmetry
lines. The projections of these orbits into the �u, y� space
are shown in Fig. 1(a), and the projections into �u, w�
space [or, equivalently, �u, Py� space] appear in Fig. 1(b).
The values of the parameters used in these calculations
are scaled energy �v22�3

c H� � 21.52, corresponding to
V �

p
3.04 and ´ � 0.6. The two orbits in the center,

labeled (iii) and (iv), are, respectively, the uphill and
downhill periodic orbits associated with the Stark effect.
The two outer orbits, labeled (i) and (ii), lie above the
Stark saddle and correspond to the TS. In Fig. 2, we
show the projections of the outer orbits in the original
variables: Observe that in the original coordinate space,
Fig. 2(a), the periodic orbit corresponding to the TS does
not encounter the boundaries of the classically allowed
region; however, when projected into the �x, Py� phase
plane, it does touch the time-reversal symmetry lines,
clearly demonstrating that it is a PODS. The two TS’s

FIG. 1. The PODS that touch both time-reversal symmetry
lines at a field strength ´ � 0.6 well above the ionization
threshold �V �

p
3.04�. Shown in (a) are the projections

of these orbits into the �u, y� space and in (b) into the
�u, Py� space.
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FIG. 2. The PODS that corresponds to the transition state. In
(a) this orbit is shown in the original Cartesian space �x, y� and
in (b) in the �x, Py� space. �´ � 0.60, V �

p
3.04 �.

seen in Fig. 1 represent a single TS in Fig. 2 because of
doubling of phase space during the regularization of the
Hamiltonian. Again, because of this doubling the electron
can ionize to the left or to the right. Ionization to the right
requires an odd number of periods, ionization to the left
an even number.

Next, we construct the stable manifolds of the PODS
and examine their intersections with a conveniently cho-
sen Poincaré surface of section, which for our purposes is
constructed using the central periodic orbit [labeled (iii)
in Fig. 1]. For electric field strengths well below the ion-
ization threshold, the surfaces of section are characteris-
tic of two coupled oscillators. With increasing electric
field strength, but still below the ionization threshold, one
observes the onset of chaotic behavior. This gives rise
to a chaotic sea in an annulus around the periodic or-
bit labeled (iv) in Fig. 1. When the field strength is just
above the ionization threshold, the chaotic sea is drained
by the ionization. Typically, an ionizing classical trajec-
tory intersects the surface of section many times, behav-
ior characteristic of chaotic ionization. At field strengths
well above the ionization threshold, one sees the onset of
“prompt” ionization, i.e., electrons ionizing without orbit-
ing about the nucleus. The following discussion focuses
on the chaotic ionization processes.

The unstable periodic orbits identified as PODS possess
stable and unstable manifolds of codimension-1 (like a
line on a surface) and thus partition the classical phase
space [13]. The volumes interior to the stable manifold
correspond to states that will ionize sometime in the
future, while those exterior to the manifold will remain
bound for all time. The partitioning of phase space by
the unstable manifold is similar: Those states within
the unstable manifold correspond to the capture of the
electron at some time in the past, while those exterior
to the manifold have been bound for all previous times.
612
The trajectories that lie outside both the stable and
unstable manifolds are bound in both the infinite future
and the past.

Ionization mechanism.—In order to investigate the dy-
namics of chaotic ionization, we examine the intersections
of the stable manifolds with the Poincaré surface of sec-
tion. The partitioning of the surface of section by the
stable manifolds, which is shown in Fig. 3, is a fractal
tiling [15]. If we follow the stable manifold of the transi-
tion state on the right backwards in time until it intersects
the surface of section, we obtain a closed curve. The in-
terior of this curve is a tile and is labeled (1) in Fig. 3. It
represents all states that will ionize within the next period
[18]. Following the stable manifold of the transition state
on the left backwards in time until it intersects the sur-
face of section yields a second tile that is wrapped around
the first tile. This tile is labeled (2). It corresponds to
all states that will ionize in two periods. Following the
two manifolds backwards in time until their second inter-
section with the surface of section yields two more tiles,
which are labeled (3) and (4). The states associated with
the tile labeled (3) will pass through the tile labeled (1)
in two periods and then will ionize during the third pe-
riod. Similarly, the states represented by the tile labeled
(4) will pass through tile (2) in two periods and will then
ionize during the fourth period. Repeating this swirling
and stretching exercise ad infinitum we obtain a fractal
tiling of the surface of section; the states interior to each
tile will ionize in a specific number of periods. The frac-
tal boundary between the totally regular parts of phase
space and the regions of phase space that ionize promptly
explains the existence of prompt and delayed ionizing
electrons [6].

The area of the nth tile, an, is proportional to the
number of states that will ionize during the nth period.
If, in the limit n ! `, the areas of the tiles obey a scaling

FIG. 3. The tiling of the periodic orbit surface of section for
an electric field strength of ´ � 0.60 �V �

p
3.04�.



VOLUME 84, NUMBER 4 P H Y S I C A L R E V I E W L E T T E R S 24 JANUARY 2000
FIG. 4. The survival probabilities for an electric field strength
´ � 0.60 �V �

p
3.04�.

law of the form an11 � han, where h is the scaling
parameter, then this scaling parameter is related to the
classical rate of ionization. In the long time limit, the
number of states ionizing during each period will be an
exponential function of the number of periods, that is,

Fn ~ e2nk , (6)

where k is the classical rate of ionization. Making use of
the scaling relation, the number of states ionizing during
the nth period will be proportional to hn and thus the
classical rate of ionization is given by

k � 2 lnh . (7)

Shown in Fig. 4 is the survival probability, that is, the
number of states that have not ionized after n periods.
After an induction period, the survival probability behaves
exponentially, verifying our expectations concerning the
scaling law. This clearly establishes the connection
between the fractal geometry imposed upon phase space
by the dynamics.

We have shown by construction that there is a TS in
the planar crossed fields problem, which, when viewed
as a PODS, reveals the mechanism of chaotic scattering
that characterizes these systems. Its stable manifolds are
used to partition the surface of section into a fractal tiling.
The properties of this tiling provide the connection be-
tween the fractal geometry and the physical observables:
Specifically, the states associated with a particular tile will
ionize after a specific number of periods and the areas of
the tiles obey a simple scaling law, leading to the connec-
tion between the geometrical properties of the tiling and
the ionization rate. This analysis clearly establishes the
utility of TST in the analysis of chaotic ionization in the
presences of velocity-dependent forces.

This work was supported by the U.S. National Science
Foundation.

[1] H. Eyring and M. Polanyi, Z. Phys. Chem. B 12, 279
(1931).

[2] M. G. Evans and M. Polanyi, Trans. Faraday Soc. 31, 875
(1935); also see papers and discussion in Trans. Faraday
Soc. 34, 3–127 (1938).

[3] P. Pechukas, Dynamics of Molecular Collisions, edited by
W. H. Miller (Plenum, New York, 1976), Pt. B.

[4] E. Pollak, Theory of Chemical Reactions, edited by
M. Baer (CRC Press, Boca Raton, Florida, 1985).

[5] G. Raithel, M. Fauth, and H. Walther, Phys. Rev. A 49,
1646 (1994).

[6] E. Flöthmann, Ph.D. thesis, University of Bielefeld,
Germany, 1994 (unpublished).

[7] This system has an antiunitary symmetry, namely, time
reversal combined with reflection about the plane contain-
ing the two fields. Consequently, its energy level spacings
display Gaussian orthogonal ensemble rather than Gauss-
ian unitary ensemble statistics as expected for systems
without this symmetry.

[8] J. Main and G. Wunner, J. Phys. B 27, 2835 (1994).
[9] J. Main and G. Wunner, Phys. Rev. Lett. 69, 586 (1992).

[10] T. Uzer and D. Farrelly, Phys. Rev. A 52, R2501 (1995).
[11] A. Mühlpfordt, U. Even, E. Rabani, and R. D. Levine,

Phys. Rev. A 51, 3922 (1995).
[12] E. Rabani, R. D. Levine, and U. Even, Ber. Bunsen-Ges.

Phys. Chem. 99, 310 (1995).
[13] S. Wiggins, Chaotic Transport in Dynamical Systems

(Springer-Verlag, New York, 1992).
[14] B. Grünbaum and G. C. Shepard, Tilings and Patterns

(Freeman, New York, 1986).
[15] A. Tiyapan and C. Jaffé, J. Chem. Phys. 99, 2765 (1993).
[16] M. J. Davis, J. Chem. Phys. 86, 3978 (1987).
[17] H. Goldstein, Classical Mechanics (Addison-Wesley,

Reading, MA, 1980).
[18] The period is defined in terms of the original physical

variables. The time elapsed (in the original, unscaled
variables) between consecutive intersections with the
surface of section corresponds to two of these periods.
613


