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Metallization of Molecular Hydrogen: Predictions from Exact-Exchange Calculations
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We study metallization of molecular hydrogen under pressure using exact-exchange (EXX) Kohn-Sham
density-functional theory in order to avoid well-known underestimates of band gaps associated with
standard local-density or generalized-gradient approximations. Compared with the standard methods,
the EXX approach leads to considerably (1–2 eV) higher gaps and significant changes in the relative
energies of different structures. Metallization is predicted to occur at a density of *0.6 mol�cm3 (cor-
responding to a pressure of *400 GPa), consistent with all previous measurements.

PACS numbers: 71.30.+h, 62.50.+p, 71.15.Mb
Despite great efforts starting with the first theoretical
predictions in 1935 [1], the determination of the elec-
tronic and structural properties of hydrogen at high pres-
sure is still incomplete [2]. Experimentally, it is established
that hydrogen transforms to high-pressure phases, but re-
mains molecular up to pressures of at least �200 GPa
[3]. Metallization of solid hydrogen has been actively
sought, but not yet observed, with one experimental team
reporting no sign of metallization up to 342 GPa [4]. It
is widely assumed that metallization would occur either
through a structural transformation to an atomic metallic
phase, which involves dissociation of the H2 molecules,
or through band overlap within the molecular phase itself.
This latter mechanism is supported by a recent experiment-
based equation of state [5] that, combined with quantum
Monte Carlo (QMC) calculations for metallic atomic hy-
drogen [6], yields an estimate for the dissociation pressure
of as much as 620 GPa [5].

The theoretical situation is complicated by the fact that
the structures at high pressures are not known, together
with the well-known difficulties of quantitative predictions
for metal-insulator transitions. Various candidate struc-
tures for the high-pressure phases (called “phase II” or
“BSP” below �150 GPa and “phase III” or “HA” above
�150 GPa) have been proposed based on static [7–15],
and dynamic [16–18] density-functional calculations and
on QMC [6] investigations. Most of these structures have
hexagonal and orthorhombic unit cells with up to four
molecules. However, there are serious difficulties asso-
ciated with the estimates of metallization pressures. The
major problem is the well-known fact that the local-density
(LDA) or generalized-gradient (GGA) approximations of
density-functional theory cause drastic underestimates of
band gaps (by typically 50%–100%). This leads to much
too low metallization pressures and also affects the qual-
ity of LDA and GGA total energies that are needed for the
prediction of energetically favorable structures. Previous
work beyond the LDA and GGA was carried out within
Slater’s Xa approximation to the Hartree-Fock method
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[11], the many-body GW framework in a first-principles
[19] and an approximate [15] formulation, and QMC simu-
lations [6]. The first two studies were limited to a simple
hcp structure with two molecules per cell oriented along
the c axis (called “mhcp” hereafter), which has been found
to be energetically unfavorable [7–10]; the GW calcula-
tions [15,19] are not able to determine relative energies of
structures. The QMC calculations indicated qualitatively
the problems with the LDA calculations but did not deter-
mine gaps.

In this Letter, we present a first-principles investigation
of band-gap closure within the molecular phase. We
employ the framework of exact-exchange (EXX) density-
functional theory, which has been shown recently to yield
very accurate band gaps and total energies for a large
set of semiconductors [20] and to lead to qualitatively
correct excitation spectra for molecules [21]. The EXX
method has crucial advantages for the present study.
Since it treats exactly all exchange-related quantities of
Kohn-Sham density-functional theory [22], it is inherently
self-interaction-free. This remedies largely the band-gap
underestimates that plague all LDA and GGA calcula-
tions, without an artificial band-gap correction and in a
parameter-free way. Second, it yields band structures and
total energies from the same calculation, which we believe
to be a key requirement for the solution of the hydrogen
problem.

In the EXX scheme, which is explained in detail
in Ref. [20], total energies Etot are obtained from the
expression

Etot � T0 1 Eel-prot 1 EH 1 Ex 1 Ec . (1)

Here T0 is the noninteracting kinetic energy, Eel-prot is the
interaction energy between the electrons and the protons,
EH is the Hartree energy, Ex the exact exchange energy,
and Ec denotes the correlation energy, which is the only
quantity that has to be approximated (the LDA is used in
this work). Band structures �´nk� and wave functions fnk
for states with band index n and wave vector k are obtained
from the Kohn-Sham equations
µ

2
=2

2
1 Vprot�r� 1 VH�r� 1 Vx�r� 1 Vc�r�

∂
fnk�r� � ´nkfnk�r� , (2)
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where Vprot�r� is the potential due to the protons, VH�r�
is the Hartree potential, and Vc�r� � dEc�dn�r� with
the density n�r� � 2

Pocc
nk jfnk�r�j2. The crucial part of

the EXX scheme is the construction of the exact local
exchange potential Vx�r� � dEx�dn�r� as the functional
derivative of the exact exchange energy with respect to
the density [20]. Since this requires repeated computation
of nonlocal exchange integrals and a linear-response func-
tion, an EXX calculation is much more demanding than
standard LDA or GGA methods. The present calculations
were performed using the bare proton potential for hydro-
gen and plane-wave basis sets with a kinetic energy cutoff
of 36 Ry that has been employed in previous calculations
on H2 [11,12]. We have also performed tests with cutoff
energies of 60 Ry and observed that band gaps ´gap and
total-energy differences DEtot among different structures
were changed by only a few hundredths of an eV and
a few tenths of a mRy�molecule, respectively. Dense
k-point meshes with Nk � 3500�Nat special points in the
Brillouin zone were employed (Nat denotes the number of
protons in the unit cell). This guarantees convergence of
DEtot better than 1 mRy�molecule.

First we show how the EXX band gaps compare with
LDA and GW band gaps over a wide range of densi-
ties, as depicted in Fig. 1 for the mhcp structure with the
bond length and c�a ratio fixed at the values determined
from LDA and extrapolations of x-ray data [19] (the only
case for which first-principles GW calculations have been
done). We can recognize several salient features: (i) EXX
gaps are about 1.5–2 eV larger than the LDA gaps for
all densities. Consequently, the EXX metallization den-
sity is considerably higher than for LDA. (ii) EXX and
LDA gaps are almost linear functions of density, which
holds also for the gaps of the other structures considered

FIG. 1. Fundamental band gaps of the mhcp structure, calcu-
lated by the EXX, GW [19], and LDA methods. The squares
represent experimental estimates for the band gap [32], the
crosses denote lowest experimental excitation energies [23,32].
The inset shows qualitatively the EXX eigenvalue spectrum in
the zero-density limit.
below. (iii) a linear extrapolation of the EXX data to zero
density (isolated H2 molecules) yields a gap of 11.4 eV,
close to the weighted average of the lowest experimental
singlet and triplet excitation energies of the H2 molecule
[23], 11.6 eV (indicated by the left cross in Fig. 1).

The last point is in agreement with recent work on
isolated noble-gas atoms [24]: the differences between
the highest occupied eigenvalue and the unoccupied EXX
Kohn-Sham eigenvalues are very good approximations to
excitation energies. This can be attributed to (i) the cor-
rect asymptotic 21�r behavior of the exact-exchange po-
tential Vx�r� in Eq. (2), which causes the EXX spectrum
of the unoccupied states to be a Rydberg series (with en-
ergies ´1 , ´2 , · · · , ´` � 0, see inset of Fig. 1) and
(ii) ´` 2 ´HOMO equaling the ionization energy I [25].
Indeed, we find ´1 2 ´HOMO in EXX to agree very well
with the lowest experimental excitation energies (crosses
in Fig. 1), both for the isolated hydrogen molecule and
the molecular solid at low density. Thus, the quasiparticle
band gap Egap , defined as the difference of the ioniza-
tion energy and the electron affinity [25], Egap � IH2 2

AH2 � IH2 , differs from the lowest EXX gap by an exciton
binding energy ´` 2 ´1 [26]. At high densities excitonic
effects are reduced, so that we expect the real quasiparticle
gaps to deviate only slightly from the EXX gaps, just as
has been demonstrated for semiconductors [20,27].

For densities greater than 0.35 mol�cm3, we have also
carried out EXX calculations on other structures with
hexagonal and orthorhombic unit cells (see Fig. 2) that
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FIG. 2. Possible ground-state structures for solid H2 at high
pressures, projected onto the xy plane. Full (empty) arrows rep-
resent molecules centered on the c (c�2) plane and pointing to-
wards the positive-z hemisphere. Though some of the structures
have a two-molecule minimum basis, we have indicated the rect-
angular cross sections of orthorhombic four-molecule unit cells
for the ease of comparison.
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have been proposed previously [7–9] as possible lowest-
energy structures on the basis of LDA and GGA total-
energy calculations. Here the H2 molecules are tilted
with respect to the z direction by an angle a � 55± and
the c�a ratio is approximately 1.58 (at high pressures).
In the structures denoted by Cmc2d

1 , the centers of the
molecules are displaced from ideal hcp sites by a distance
d (we normalize d such that Cmc21

1 coincides with the
Cmca structure). Proton coordinates derived from LDA
calculations for these structures [7,14] were used as input
for the present EXX calculations since a complete unit-
cell relaxation within the EXX scheme is computationally
too demanding at present.

Figure 3 depicts the fundamental EXX band gaps of the
structures of Fig. 2 for densities between n1 � 0.35 and
n2 � 0.60 mol�cm3. [The corresponding pressures can
be specified by our theoretical calculations or by using an
extrapolated experimental equation of state [5,28,29]. We
find that at the densities n1 and n2, the theoretical pressures
(P1 and P2) are close to those of Ref. [28], corresponding
to 100 and 400 GPa; Ref. [5] leads to much lower pres-
sures at high density (P1 � 100 GPa, P2 � 325 GPa),
whereas Ref. [29] gives higher pressures (P1 � 115 and
P2 � 500 GPa).] For the Cmc20.5

1 , Pca21, Cmc20
1, and

P21�c structures, we obtain metallization densities of
0.468, 0.535, 0.537, and 0.542 mol�cm3, respectively.
Note that the use of LDA coordinates means at high
pressure a bond length of r0 � 1.45 a.u. We have veri-
fied that using the experimental (r

Expt.
0 � 1.40 a.u.) or

EXX (rEXX
0 � 1.38 a.u.) bond length of the isolated H2

molecule [30] increases calculated band gaps by about
0.6 and 0.9 eV, respectively. For the P21�c structure,
this is indicated by the thin dashed lines in Fig. 3. The
larger bond length causes the predicted metallization

FIG. 3. Fundamental EXX band gaps of various candidate
structures for molecular hydrogen as a function of density. The
thin long-dashed (short-dashed) line indicates the gaps of the
P21�c structure obtained using the EXX (experimental) bond
length of the isolated molecule.
6072
density to increase up to 0.58 mol�cm3, corresponding to
a calculated pressure of 375 GPa.

The EXX scheme predicts that the three structures with
the largest gaps (P21�c, Cmc20

1, and Pca21) are the most
stable ones, as reported in Fig. 4. A key result of the uti-
lization of the EXX functional is that the metallic Cmca
structure becomes more stable than the insulating phases
only above a density of 0.61 mol�cm3 (calculated pressure
415 GPa). In contrast, LDA [15] and GGA calculations
[16] find this to be the most stable structure at much lower
density (at quoted pressures of P � 140 and 180 GPa).
Such a low metallization pressure is in severe disagree-
ment with experiment, and we believe the problem is a
consequence of the erroneous LDA and GGA band gaps
that indirectly affect the total energy. The energy is de-
creased by populating the conduction states, an effect that
occurs in the EXX calculations only upon much higher
compression. However, the rule “the lower the energy, the
wider the band gap” [9] is not exactly obeyed: the most
stable structure Pca21 has only the third highest band gap.
We find Pca21 to be more stable than P21�c for all den-
sities, in agreement with the LDA results of Ref. [10], but
in disagreement with the LDA and GGA calculations of
Refs. [15] and [16] that slightly favor P21�c.

Zero-point motion of the protons is a very difficult prob-
lem that has been the subject of much debate. For the
present purposes there are three effects. First, the pres-
sure is increased (by approximately 10% [6]). Second,
the band gaps may change. The three most stable struc-
tures have gaps that differ only by a few tenths of an eV.
One might interpret this as an estimate of the influence
of zero-point motion which is expected to average over
low-energy structures. Tight-binding calculations on large
cells with hydrogen molecules in disordered arrangements
[31] indicate effects that are similarly small. However, as
the gaps become small, of order of the vibron energies
�0.5 eV, we expect the zero-point motion to increase the

FIG. 4. EXX total energies of possible structures of molecular
hydrogen, relative to the energy of the Pca21 structure.
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gaps by a dynamic level-repulsion effect. Third, relative
energies of different structures are changed. QMC calcula-
tions [6] and work by Straus and Ashcroft [13] suggest that
zero-point motion favors isotropic structures (in our case,
Pca21, P21�c, and Cmc20

1) with respect to anisotropic
ones like Cmca. Including all these effects, we expect the
metallization pressure to increase to *400 GPa.

Another possibility is the metallization by a structural
transition to a possible monatomic phase. A comparison
of enthalpies derived from various experimental equations
of state with QMC calculations [6] for hydrogen in the dia-
mond phase yields dissociation pressures between 300 and
620 GPa [5,6]. The large range is due to the extreme sen-
sitivity of the transition point to the form of the equation of
state. Thus we can conclude only that our calculated metal-
lization pressure is in the same range as possible transitions
to other structures. However, this does not affect our main
point that up to pressures of at least 400 GPa, molecular
hydrogen is predicted to be stable and insulating.

In summary, we have investigated band gaps and total
energies of possible candidate structures for compressed
molecular hydrogen using a Kohn-Sham density-functional
scheme (EXX) that treats exchange interactions exactly.
EXX leads to band gaps that are 1–2 eV higher than in
LDA (similar to gaps found recently using an approximate
GW approach [15]) and, in addition, predicts changes of
the relative energies of structures near the metal-insulator
transition. In contrast to LDA and GGA calculations, the
energetically preferred structure has Pca21 symmetry up
to density 0.61 mol�cm3 (pressure � 400 450 GPa). In
this structure there is the possibility of metallization via
band overlap, which is here found to occur at �400 GPa.
Above this pressure there are three possibilities: a metallic
molecular phase as described here; some new molecular
phase that is more stable and insulating; or a transition to
an atomic phase expected to be metallic.
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