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Wave Dispersion Relations in Yukawa Fluids
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The wave dispersion relations in the fluid phase of Yukawa systems are obtained from molecular
dynamics (MD) simulations for a wide range of the parameters. The Yukawa system is a collection of
particles interacting through Yukawa (i.e., screened Coulomb) potentials, which can serve as a simple
model for dusty plasmas. Our simulations have clearly shown that the transverse wave dispersion has a
cutoff at a long wavelength even in the case of weak screening. The MD simulation data are compared
with earlier theoretical predictions of the Yukawa dispersion relations and the validity of these theories
is clarified.

PACS numbers: 52.25.Ub, 52.25.Zb, 52.35.–g
The Yukawa system is a collection of particles in-
teracting through Yukawa (i.e., screened Coulomb) pair
potentials

f�r� �
Q2

4p´0

exp�2kDr�
r

.

Here r is the distance between two Yukawa particles and
k21

D is the screening length. As a mathematical model, the
Yukawa system may be of special interest as its behavior
can be varied continuously between systems governed by
short-range and long-range forces. As to specific physi-
cal systems, Yukawa systems may serve as a model for
charged dust particles in plasmas or colloidal particles in
electrolytes [1–6]. In a plasma, the charge on a dust par-
ticle (whose diameter is typically 1 mm or less) is usually
negative (which we denote by 2Q: typically a few thou-
sand electron charges) as the mobility of electrons is much
higher than that of ions. The screening is due to the forma-
tion of a Debye sheath around each charged dust particle
and k21

D is given by the Debye length of the background
plasma. Recent experiments [7,8] have demonstrated that
such charged dust particles in plasmas support longitudinal
wave excitations, which are called the dust acoustic waves
(DAWs) [9–15].

When the Yukawa system is in thermodynamical
equilibrium, it may be characterized by two dimensionless
parameters: k � kDa, i.e., the ratio of the interparticle
distance a � �3�4pn�1�3 (where n is the particle
number density) to the screening length k21

D and
G � Q2�4p´0aT , i.e., the inverse of the system tempera-
ture (thermal energy) T measured in units of Q2�4p´0a.
The system is called “strongly coupled” if the coupling
parameter G� � G exp�2k�—i.e., the ratio of the aver-
age interparticle potential energy to the average kinetic
energy—is greater than unity. In the limit of no screening
(i.e., k � 0), the system is called the one-component
plasma (OCP) [16–20].

In this paper, we study dispersion relations of both
longitudinal and transverse waves in the fluid phase
of Yukawa systems, using molecular dynamics (MD)
0031-9007�00�84(26)�6026(4)$15.00
simulations [2–6]. The longitudinal wave of a Yukawa
fluid may be regarded as the simplest approximation of
the DAW, upon which one can build more realistic models
of experimentally observed DAWs with, e.g., dust-neutral
collisions. Recently several theoretical descriptions of
the Yukawa dispersion relations have been presented
[10–13,15] in the strongly coupled regime. We shall com-
pare our simulation results with some of these theories.

Let us consider a system of N identical, infinitesimally
small dust particles of mass m and charge 2Q. The force
on each dust particle can be derived from the potential
(i.e., “excess”) energy Uex, which is actually the total
Helmholtz free energy of the background plasma for given
instantaneous positions of dust particles [5]. After drop-
ping the constant free energy of the uniform background
plasma for simplicity, the excess energy may be written as
Uex � Uc 2 NQ2kD�8p´0 where

Uc �
1
2

X
ifij

X
f�jri 2 rjj� 2

NQ2n

2´0k2
D

(1)

is called the correlation energy. In Eq. (1), ri and rj denote
the positions of ith and jth dust particles and the second
term on the right-hand side represents the free energy (ex-
cluding the uniform ideal-gas free energy) of the charge-
neutralizing background plasma. The remaining term in
Uex, i.e., 2NQ2kD�8p´0, represents the free energy of
each sheath. For details of the derivation of Uex, the reader
is referred to Ref. [5].

Simulation particles are placed in a cubic box with pe-
riodic boundary conditions. The total potential is then cal-
culated for the Yukawa interactions among all the particles
in the simulation box and all of their periodic images. The
infinite potential sum due to all periodic images (i.e., the
Ewald sum) is approximated by a tensor-product spline
function [21], which enables us to simulate Yukawa sys-
tems of small k efficiently with a relatively small num-
ber of the simulation particles N [3,4]. Thermodynamical
equilibrium at a given temperature (or G) is first attained by
periodically renormalizing particle velocities [4]. Once the
system is in thermodynamical equilibrium, we discontinue
© 2000 The American Physical Society
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the periodic velocity renormalization and let the system
evolve under the constant-energy conditions. The statisti-
cal average � � of a dynamical quantity is obtained as the
time average over a sufficiently long time period in this
microcanonical simulation.

Waves excited in Yukawa systems are collective mo-
tions of the constituent particles and can be character-
ized by space-time correlation functions. The longitudinal
and transverse current correlation functions [20,22] are de-
fined as

Cl�k, t� �
1
N

��k ? j�k, t�� �k ? j�2k, 0��� (2)

and

Ct�k, t� �
1

2N
��k 3 j�k, t�� ? �k 3 j�2k, 0��� , (3)

where j�k, t� �
PN

j�1 vi�t� exp�ik ? rj�t�� is the Fourier
transformation of the particle current for a given wave
number vector k. We also write the Fourier transformation
of these functions into the frequency space as C̃l�k, v� and
C̃t�k, v�.

The combinations of �k, v� that give the peaks of
C̃l�k, v� and C̃t�k, v� determine the dispersion relations
for the longitudinal and transverse modes. Figures 1, 2,
and 3 show the dispersion relations for k � 0.1, 1.0, and
2.0, respectively, obtained in this manner from MD simula-
tions with N � 250 and 800 in the fluid phase near solidi-
fication [2]. The abscissa represents the normalized wave
number q � ka with k � jkj. The frequency is normal-
ized by the nominal plasma frequency of Yukawa particles
vp �

p
Q2n�´0m. The frequency resolution in all the

figures in this paper is Dv�vp � 0.0283. For each k, the

FIG. 1. The dispersion relations of the longitudinal (�, �)
and transverse (�, �) waves obtained from MD simulations
for k � 0.1. MD simulations with N � 800 (�, �) and N �
250 (�, �) are for G � 150 and G � 142. The vertical bars
represent the width of the intervals where the current correlation
functions are larger than 75% of the maximum values. The solid
curve is the dispersion based on the QLCA theory, representing
Eq. (4) with k � 0.1 and G � 150. The upper dashed curve
represents Eq. (5) with G � 150. The lower dashed curve is
the least-squares fit of Eq. (6) to the transverse MD data for
0.5 , q , 2.0 with the fitting parameters of �tRvp�21 � 0.22
and h� � 0.13.
system temperatures (or G) are slightly different between
the two sets of runs with N � 800 and N � 250 since we
do not have precise control over temperatures in micro-
canonical simulations. In these runs, the temperatures fluc-
tuate in time and the indicated temperatures are the time
average in thermodynamical equilibrium. The dispersions
obtained from these two sets of runs show good agreement,
which implies the dispersion relations are hardly affected
by the slight temperature differences and 250-particle MD
simulations provide sufficiently accurate results.

Rosenberg and Kalman [11] obtained an analytic expres-
sion of the wave dispersion relation for the longitudinal
mode in the strong-coupling regime, using the quasilocal-
ized charge approximation (QLCA) [23,24]. In the long-
wavelength limit, it may be written as

v2

v2
p

�
q2

q2 1 k2

1
q2

G

∑
4
45

uc 2
2
45

y
≠uc

≠y
1

4
15

y2 ≠2uc

≠y2

∏
, (4)

where uc � Uc�T is the normalized correlation energy
and y � k2.

The solid curves in Figs. 1, 2, and 3 show the disper-
sion relations of Eq. (4) with k and G being those for the
corresponding N � 800 simulations. For k # 1, uc�G, k�
given in Refs. [3] and [4] was used to evaluate Eq. (4), as
in Ref. [11]. For k � 2, the data given in Table VIII of
Ref. [2] were used to evaluate uc�G, k� and its derivatives.
These curves are in good agreement with the MD simula-
tion results.

The QLCA method to derive Eq. (4) is based on the
premise that the wave motion is sufficiently fast that the
average position of each oscillating Yukawa particle does
not change significantly during the wave motion and each
particle is subject to the average restoring force from other
particles. In the fluid phase, however, if the wave mo-
tion is sufficiently slow, average positions of all particles
can relax to new positions during the wave motion and the

FIG. 2. The dispersion relations of the longitudinal and trans-
verse waves obtained from MD simulations for k � 1.0 with
N � 800 (at G � 207) and N � 250 (G � 202). The symbols
are the same as those used in Fig. 1. The lower dashed curve
is the least-squares fit of Eq. (6) to the transverse MD data for
0.5 , q , 2.0 with the fitting parameters of �tRvp�21 � 0.13
and h� � 0.16.
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FIG. 3. The dispersion relations of the longitudinal and trans-
verse waves obtained from MD simulations for k � 2.0 with
N � 800 (at G � 435) and N � 250 (G � 395). The symbols
are the same as those used in Fig. 1. The lower dashed curve
is the least-squares fit of Eq. (6) to the transverse MD data for
0.5 , q , 2.0 with the fitting parameters of �tRvp�21 � 0.12
and h� � 0.097.

restoring force may not be fully exerted on each particle.
This relaxation time of particle positions is called the “dif-
fusion time” tD in Refs. [11] and [24]. The QLCA theory
is thus applicable only to waves satisfying vtD . 1.

Recently Kaw and Sen have derived the wave disper-
sion relations of Yukawa systems using the generalized-
hydrodynamic (GH) equation [13]. The GH equation is the
hydrodynamic equation incorporating the nonlocal visco-
elasticity with memory effects arising from the strong cor-
relation among constituent particles. The time scale of the
phenomenological viscoelastic memory effect is specified
by the “relaxation time” tR (denoted as tm in Ref. [13]),
which we assume to be of the same order as the diffu-
sion time tD of the QLCA theory. In the long-wavelength
limit, the longitudinal-mode dispersion relation obtained
from the GH equations [13] may be written for vtR ¿ 1
(i.e., kinetic regime) as

v2

v2
p

�
q2

q2 1 k2 1
q2

G

µ
1
3

1
4
45

uex

∂
, (5)

where uex � Uex�T denotes the normalized excess energy.
[This equation is the same as Eq. (19) of Ref. [13].] Since
the GH equations used in Ref. [13] were originally con-
structed for OCPs, the dependence of uex on k was ig-
nored in the derivation of Eq. (5). Also, in contrast with
Eq. (4), there is a constant term ( 1

3 ) in the parentheses of
Eq. (5). The upper dashed curves in Figs. 1 and 2 de-
pict the dispersion relation of Eq. (5) with the OCP ex-
cess energy uex from Ref. [18] (as suggested in Ref. [13])
with G being those of the corresponding N � 800 simula-
tions. These dashed curves are almost identical with corre-
sponding solid curves, indicating the differences between
Eqs. (4) and (5) are negligible for k & 1. In Fig. 3 (for
k � 2), the nominal evaluation of Eq. (5) with the OCP
excess energy uex is not presented as the resulting disper-
sion relation is completely off the MD simulation data.
This indicates that, in the GH model, the correct evalu-
ation of thermodynamical variables for Yukawa systems
with finite k (rather than the OCP system) is essential.
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The dispersion relation for the transverse mode (which
is also called the shear mode) was also derived by Kaw
and Sen from the GH equations and given in Eq. (21) of
Ref. [13]. Writing the real and imaginary parts separately,
we have µ

Rev

vp

∂2

�
h�

tRvp
q2 2

1
4�tRvp�2 (6)

and Imv � 1�2tR for the mode satisfying q2 .

1�4tRvph� and arbitrary vtR . Here h� � � 4
3h 1 z ��

�mnvpa2� is the normalized kinematic longitudinal
viscosity with h and z being the shear and bulk viscosi-
ties [22].

Ideally one should estimate tR and h� directly from MD
simulations. However, this would be a major computa-
tional task that requires detailed analysis of the assumed
phenomenological viscoelastic memory function. Instead
here we take a simple alternative approach: We now ask, if
Eq. (6) is valid, what numerical values should the thermo-
dynamical parameters tR and h� take? To answer this
question, we least-squares fit Eq. (6) to the transverse-
mode dispersion data (denoted by � and �) in Figs. 1–3.
As our simulation results clearly show that there is a cutoff
for the transverse dispersion around q � 0.5 (even in the
weak screening case of k � 0.1), we need to exclude such
data points from fitting. In addition, hydrodynamics theory
is valid only for long-wavelength modes, so we have used
data only on 0.5 , q , 2 for fitting. (Simulation data of
N � 800 and N � 250 agree well despite the small differ-
ences in temperature, so we have used both data sets for a
single fitting.) The lower dashed curves in Figs. 1–3 rep-
resent these fitting curves, where the fitting parameters are
�tRvp�21 � 0.22, 0.13, 0.12, and h� � 0.13, 0.16, 0.097,
respectively. These tR values imply that the longitudinal-
wave dispersion relation of Eq. (4) indeed satisfies the ki-
netic regime condition vtD ¿ 1 (under the assumption
of tR � tD), which justifies the use of the QLCA method
in the derivation of Eq. (4).

If the particle correlations are weak, then tR is small and
the system is in the hydrodynamic regime (vtR ø 1). In
this case, the dispersion relation of the longitudinal mode
may be derived from the standard Navier-Stokes equa-
tions asµ

Rev

vp

∂2

�
q2

q2 1 k2 1
c2

sq2

v2
pa2 2

h�2q4

4
(7)

and Imv � 2h�k2�2 with the sound velocity cs. For
inviscid fluids (i.e., h� � 0), Eq. (7) represents the
Langmuir wave dispersion for the OCP (i.e., k � 0) and
the standard sound-wave dispersion in the case of highly
screened neutral gases (i.e., k ! `). In the isother-
mal ideal gas case, one may set cs � c0 	 �3T�m�1�2.
Note that c2

0�v2
pa2 � 1�G. The shear mode cannot be

sustained in the weakly coupled regime.
Figures 4 and 5 show the dispersion relations of the

longitudinal mode in Yukawa fluids when the coupling is
moderate: G � 1.04, k � 0.1 (G� � 0.94) for Fig. 4, and
G � 1.98, k � 1.0 (G� � 0.73) for Fig. 5, obtained from
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FIG. 4. As in the previous figures, the open circles � with bars
represent the dispersion relation of the longitudinal mode at k �
0.1, G � 1.04 [G� 	 G exp�2k� � 0.94] obtained from MD
simulations with N � 250. The solid curve represents Eq. (7)
with h� � 0 and cs � c0. The dashed curve is the dispersion
relation of the Langmuir wave, i.e., Eq. (7) with k � h� � 0
and cs � c0.

MD simulations with N � 250. In Fig. 4 the solid curve
represents Eq. (7) with cs � c0 and h� � 0, which shows
excellent agreement with the MD data. The Langmuir
wave dispersion relation [i.e., Eq. (7) with k � h� � 0
and cs � c0] is also given by the dashed curve for refer-
ence. Since Eq. (7) with cs estimated from the OCP ex-
cess energy (as suggested in Ref. [13]) disagrees with our
MD simulation data for larger k, we again least-squares
fit Eq. (7) to the simulation data in Fig. 5. The obtained
fitting parameters are c2

s �c2
0 � 0.63 and h� � 0, which in-

dicates that this system has a higher compressibility than
that with a smaller k.

In summary, we have performed MD simulations and
obtained the wave dispersion relations of Yukawa fluids
in the parameter range that covers both strong and weak
coupling. It is of particular interest that there is a cutoff
of the transverse wave dispersion at a long wavelength
(q � 0.5 for k & 2 near solidification). Such cutoffs are
known for neutral fluids governed by short-range forces,
but in previous studies for plasmalike systems with longer-
range forces, including Ref. [20] for OCPs, the presence
of transverse wave cutoff had never been shown. This also

FIG. 5. The dispersion relation of the longitudinal mode at
k � 1.0, G � 1.98 (G� � 0.73). The symbols are the same as
those in the previous figure. The solid curve represents the least-
squares fit of Eq. (7) to the MD simulation data, which provides
the fitting parameters h� � 0 and c2

s � 0.63c0.
suggests that, in order to identify the dust shear (i.e., trans-
verse) wave experimentally, one has to seek modes with
relatively short wavelengths and low frequencies. We have
also compared our numerically obtained Yukawa disper-
sion relations with some of the earlier theoretical estimates
[11,13] and found good agreement in the regime where
their stated approximations are valid. We expect the dis-
persion relations derived from the GH model in Ref. [13]
can be further improved for larger k if the thermodynami-
cal variables (such as the excess energy uex) are correctly
evaluated for the corresponding Yukawa system with
finite k.
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