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Thermodynamics of a n-p Condensate in Asymmetric Nuclear Matter

A. Sedrakian1 and U. Lombardo2

1Kernfysisch Versneller Instituut, NL-9747 AA Groningen, The Netherlands
2Dipartimento di Fisica, Universita di Catania, Corso Italia 57, Catania, Italy

and INFN-LNS, Via Santa Sofia 9500, Catania, Italy
(Received 2 August 1999)

We study the neutron-proton pairing in nuclear matter as a function of isospin asymmetry at finite tem-
peratures and the empirical saturation density using realistic nuclear forces and Brueckner-renormalized
single particle spectra. Our computation of the thermodynamic quantities shows that, while the difference
of the entropies of the superconducting and normal phases anomalously changes its sign as a function of
temperature for arbitrary asymmetry, the grand canonical potential does not; the superconducting state
is found to be stable in the whole temperature-asymmetry plane. The pairing gap completely disappears
for density asymmetries exceeding ac � �rn 2 rp��r � 0.11.
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Neutron-proton pair correlations are potentially impor-
tant in a number of contexts, including the study of the
nuclear structure of medium mass N � Z nuclei produced
at the radioactive nuclear beam facilities [1] and the theory
of the deuteron formation in the medium energy heavy-ion
collisions [2]. In the astrophysical context n-p pairing cor-
relations are relevant for the astrophysical r-process [3,4]
and could play a major role in neutron star models which
permit pion or kaon condensation [5].

As the existence of the pair correlations crucially de-
pends upon the overlap between the neutron and proton
Fermi surfaces, one expects a suppression of the pairing
correlations if the system is driven out of the isospin-
symmetric state. The mechanism driving the suppression is
encountered in many fermionic systems where particles lie
on two different Fermi surfaces. The simplest example is
the spin zero pairing in a superconducting metal in a mag-
netic field; here the spin degeneracy is relaxed because of
the Pauli paramagnetism [6–8]. Another system is the B
state of liquid 3He (Balian-Werthamer state) in a magnetic
field [9]. A closely related topic is the transition from a
semiconductor to a superconductor, where the role of the
separation between the two Fermi energies is played by
the semiconductor gap [10]. Apart from condensed matter,
a similar situation arises in the finite temperature/density
QCD, where color symmetry is spontaneously broken and
the system is unstable against the formation of the �qq̄�
color superconducting condensate [11–14].

The first purpose of this Letter is to show, using the
example of the n-p pairing in the nuclear matter, that for
systems with broken time-reversal symmetry the difference
of the entropies of the superconducting and normal phases
anomalously changes its sign as a function of tempera-
ture for arbitrarily small perturbation from the symmetric
state. Nevertheless, the grand canonical potential still cor-
responds to a thermodynamically stable superconducting
state in the whole temperature-asymmetry plane. The sec-
ond purpose is to provide a first computation of the key
thermodynamic quantities of the asymmetric n-p conden-
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sate from the strong coupling BCS theory. In doing so we
carry out a fully microscopic calculation of the n-p pair-
ing with realistic nuclear interactions, including ladder-
renormalized single particle energies [15].

In recent years much theoretical effort has been de-
voted to the understanding of the n-p pair correlations.
They have been studied both in the infinite nuclear mat-
ter within the Thouless [16,17] or the Bardeen-Cooper-
Schrieffer [18] theories of superconductivity [19–26] and
in finite nuclei within mean-field effective interaction theo-
ries of pairing [1,27–33]. In particular, microscopic cal-
culations, based on the BCS theory for the bulk nuclear
matter, show that the isospin-asymmetric matter supports
Cooper-type pair correlations in the 3S1-3D1 partial-wave
channel due to the tensor component of the nuclear force.
The energy gap is of the order of 10 MeV at the em-
pirical saturation density [19–21,26] when the effects of
the medium polarization on the pairing force [34–38] are
neglected. The studies based on the Thouless criterion
[16,17] for the thermodynamic T matrix (the divergence
of the ladder resummation scheme at the critical tempera-
ture) deduced the suppression of the critical temperature
with the isospin asymmetry [22,23]; however, they do not
permit one to draw conclusions about properties of the
superconducting state with a finite gap. While the stud-
ies based on the BCS theory, without self-energy correc-
tions to the single particle spectrum [24,25], give a correct
qualitative picture, they overestimate the magnitude of the
pairing gap and the critical asymmetries at which the pair-
ing disappears.

To set the stage, let us start with the solution of the
Dyson equations for the normal and anomalous propaga-
tors in the Matsubara formalism. In doing so we shall
decouple the isospin singlet SD pairing channel from the
isospin triple channels, as the SD coupled channels con-
tain the dominant part of the attractive pairing force. In
this case the pairing matrix is diagonal in the spin space,
i.e., one deals with the unitary triplet state (see Ref. [21]).
The proton/neutron propagators follow from the solution
© 2000 The American Physical Society
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of the Gor’kov equations, and can be cast in the form
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The neutron-proton anomalous propagator has the form
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where vm are the Matsubara frequencies, the upper sign in
G� p�n� corresponds to protons, and the lower to neutrons.
The isospin asymmetry lifts the degeneracy of the quasi-
particle spectra, thus leading to two separate branches for
protons and neutrons,
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are the single particle energies of neutrons and
protons. The strong coupling BCS theory is coupled to the
Brueckner renormalizaton scheme via the single particle
energies defined as ´

�n,p�
�k

� k2�2m 1 U�n,p��k� 2 m�n,p�;
here U�n,p��k� are the single particle potentials which are
derived from the Brueckner theory of asymmetric nuclear
matter [15] and m�n,p� are the chemical potentials for neu-
trons and protons, which are derived from the BCS theory
self-consistently. Both schemes are normalized to the same
densities. The small effect of the feedback of the pairing
correlation in the Brueckner calculations of the mean field
[39] is, however, neglected.

Using the angle-averaging procedure, which is an
adequate approximation for the present purpose (see
Ref. [21]) the BCS gap equation for asymmetric nuclear
matter can be derived. We find
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where D�k�2 � D0�k�2 1 D2�k�2 is the angle-averaged
neutron-proton gap function, f�E� � �1 1 exp�bE�	21 is
the Fermi distribution function, b21 � kBT , where T is
the temperature and kB is the Boltzmann constant. The
driving term, Vll0 , is the bare interaction in the SD chan-
nel. The density matrices of neutrons and protons follow
from Eq. (1) after summation over frequencies,
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Summation over frequencies in Eq. (2) leads to the density
matrix of the particles in the condensate,
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The partial densities of nucleons, in terms of the den-
sity matrices, are r�p�n� �

P
�k,s n�p�n�

s
�k�. It is essen-

tial that the coupled system of Eqs. (4) and (5) is solved
self-consistently.

Now we are in the position to write down the key ther-
modynamic quantities. As the occupation of the quasi-
particle states is given by the Fermi-Dirac distribution
function, the entropy of the system is given by the combi-
natorical expression:
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where f̄�E6
�k

� � 1 2 f�E6
�k

�. Equation (7) is an obvious
extension of the mean-field expression for the entropy in
the symmetrical nuclear matter [21] to the asymmetric
case. The internal energy, defined as the grand canoni-
cal statistical average of the Hamiltonian, U � �Ĥ 2

m�n�r̂n 2 m� p�r̂p�, reads
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where we have carried out the spin summation in the sec-
ond term. The nonpairing interaction energy among the
quasiparticles and the contribution from the chemical po-
tentials are included in the single particle energies (the
first term) of Eq. (8). The second term includes the BCS
mean-field interaction among the particles in the conden-
sate. Note that the interaction in the second term of Eq. (8)
can be eliminated in terms of the gap Eq. (4). Finally, the
thermodynamic potential is given as

V�T , m� � U�T , m� 2 TS . (9)

The expressions for the entropy and the internal energy
in the normal state follow from Eqs. (7) and (8) in the
limit D � 0. Our main interest below is the change in the
thermodynamic potential of the superconducting state with
respect to the normal state dV � Vs 2 Vn.

Numerical calculations of the pairing gap were carried
out using the Paris potential. Figure 1 shows the values of
the pairing gap in the 3S1-3D1 partial wave channel as a
function of the temperature at the empirical saturation den-
sity r � 0.17 fm23. The asymmetry parameter is defined
as a � �rn 2 rp��r. For the value a � 0, one finds the
usual BCS solution: the gap is a monotonically decreas-
ing function of the temperature and vanishes at the criti-
cal temperature Tc � D�T � 0��1.76. In the asymmetric
603
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FIG. 1. The pairing gap at the empirical saturation density as a
function of the temperature for asymmetries a � 0, 0.05, 0.07,
and 0.1.

state the gap develops a maximum at a certain intermedi-
ate temperature in the range 0 , T , Tc; the value of the
critical temperature is reduced and the BCS relation be-
tween the critical temperature and the value of the gap at
T � 0 does not hold any longer. For large asymmetries
a � 0.1 the superconducting state exists only in a finite
temperature range; it completely vanishes for the critical
asymmetry ac � 0.11. This behavior is the result of the
interplay between the increasing shift between the radii of
the Fermi spheres of neutrons and protons with increasing
asymmetry and the smearing of the Fermi surfaces due to
both interaction driven correlations and the temperature.
While the first factor tends to suppress the pairing, the
role of the second factor is twofold. On the one hand,
the temperature and correlations smear the Fermi surfaces
thus increasing the overlap between the two Fermi spheres
which promotes the pairing. If, however, the temperatures
are high enough the pair correlated states are quenched by
the thermal excitation. The pairing gap, hence, has a maxi-
mum at some intermediate temperature. The two critical
temperatures are controlled by two different mechanisms.
The superconductivity vanishes with decreasing tempera-
ture at a lower critical temperature when the smearing
becomes insufficient to support the pairing. The supercon-
ductivity vanishes at the upper critical temperature because
of the thermal excitation of the system, as in the standard
BCS theory.

Figure 2 displays the entropies of the normal and su-
perconducting states as a function of the temperature at
the empirical saturation density. The a � 0 behavior of
the normal and superconducting entropies is the one ex-
pected from the theory of the normal Fermi liquids and
the BCS theory, respectively: the entropy of the normal
state is a linear function of the temperature; the entropy
of the superconducting state is linear close to the critical
temperature and decreases exponentially in the low tem-
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FIG. 2. The entropy of normal (solid line) and superconduct-
ing state for a � 0, 0.05, and 0.07; the a � 0.1 curve is
indistinguishable from the normal state entropy curve on the
figure’s scale.

perature limit. For finite asymmetries the entropy of the
normal state is unchanged. The curve of the entropy of
the superconducting state, however, shows an anomalous
behavior by crossing the entropy curve of the normal state.
For temperatures below the crossing point the entropy of
the superconducting state is larger than that of the normal
state. The crossover to the anomalous behavior occurs at
the temperature at which the gap reaches its maximum.
This anomalous dependence of the entropy of the super-
conducting state on the temperature implies that this state
could be unstable for temperatures below the temperature
at which the gap attains its maximum. The internal energy,
the first term in Eq. (9), has a definite sign as it vanishes in
the normal state and is a quadratic form of the pairing gap.
Thus the sufficient condition for the onset of the instabil-
ity is that the contribution of the second term in Eq. (9)
dominates that of the first in the range of the temperatures
below the crossover point.

Figure 3 shows the difference in the thermodynamic
potentials of the normal and superconducting state dV.
This quantity is negative for all temperatures and asymme-
tries. The anomalous change of sign of Sn 2 Ss, therefore,
does not change the net balance between the energies of
the normal and superconducting states. The temperature
dependence of dV is reminiscent of the temperature de-
pendence of the gap function by virtue of the (approxi-
mately) quadratic dependence of the internal energy on the
pairing gap. We thus conclude that the superconducting
state is stable, at least in the present model, in the whole
temperature-asymmetry plane, whenever a nontrivial so-
lution to the gap equation exists. We have verified that
the deduced behavior of the dV is the consequence of the
fact that the contribution of the internal energy to the ther-
modynamic potential dominates the contribution from the
entropy.
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FIG. 3. The difference in the thermodynamic potentials of the
superconducting and normal states at the empirical saturation
density as a function of the temperature for asymmetries a � 0,
0.05, 0.07, and 0.1.

In conclusion, we studied the pairing in the isospin
asymmetric nuclear matter using realistic nuclear interac-
tions combined with ladder-renormalized single particle
energies. The pairing at the empirical saturation density
vanishes for the critical density asymmetry ac � 0.11 at
the finite temperature T � 1.5 MeV. Our evaluation of
the thermodynamic quantities of the isospin asymmetric
nuclear matter shows that, while the entropy of the super-
conducting state becomes larger than that of the normal
state below a certain temperature, the thermodynamic po-
tential at the empirical saturation density corresponds to
a stable superconducting state in the whole asymmetry-
temperature plane.
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