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Clogging Time of a Filter
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We study the time until a filter becomes clogged due to the trapping of suspended particles as they
pass through a porous medium. This trapping progressively impedes and eventually stops the flow of the
carrier fluid. We develop a simple description for the pore geometry and the motion of the suspended
particles which, together with extreme-value statistics, predicts that the distribution of times until a
filter clogs has a power-law long-time tail, with an infinite mean clogging time. These results and its
consequences are in accord with simulations on a square lattice porous network.

PACS numbers: 47.55.Kf, 47.55.Mh, 64.60.Ht, 83.70.Hq
In this Letter, we investigate the time for a filter to clog.
In a typical filtration process, a dirty fluid is “cleaned”
by passing it through a porous medium to remove the
suspended particles. The medium enhances filtering ef-
ficiency by increasing both the available filter surface area
for trapping suspended particles as well as the exposure
time of the suspension to the active surfaces. Such a
mechanism is the basis of water purification, air filtra-
tion, and many other separation processes [1,2]. As sus-
pended particles become trapped, the fluid permeability of
the medium gradually decreases, and eventually the filter
clogs. Determining the time dependence of this clogging
is basic to predicting when a filter is no longer useful, ei-
ther because of reduced throughput or reduced filtration
efficiency, and should be discarded.

While clogging has been extensively investigated by
engineers, much of the previous literature on this phenome-
non is either empirical or incorporates so many micro-
scopic details that it is difficult to draw general conclusions
about clogging kinetics [3]. In contrast, we develop a mini-
malist model that provides an intuitive understanding for
clogging which should apply to simple and easily prepared
porous media, such as unconsolidated bead packs [4]. Our
model is based on approximating the clogging of a porous
medium by the clogging of a single parallel array of pores
which are blocked in decreasing size order (Fig. 1). The
use of a single-layer system is based on previous studies
of filtration which showed that clogging preferentially oc-
curs in the upstream end of the network when particles and
pores are of comparable size [5,6]. The single-layer sys-
tem represents the ultimate limit of this gradient-controlled
process.

The approximation of size-ordered blocking is based on
the commonly used picture that a particle has a probability
proportional to the relative flux to enter a given open pore
from among the outgoing pores at a junction [2,5,7]. For
Poiseuille flow, this flux is proportional to r4, where r is
the pore radius. Size-ordered blocking arises by replacing
the exponent 4 in this flow-induced entrance probability
by `. This approximation is relatively accurate for a broad
distribution of pore radii. The size ordering also provides a
direct correspondence between the radius of the currently
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blocked pore and the time until it is blocked. By using
extreme value statistics [8] to compute the radius distribu-
tion of the last few open pores, together with the connec-
tion between the radius of the currently blocked pore and
the network permeability, we determine the distribution of
clogging times. The predictions of this idealized model-
ing agree well with detailed simulations of the flow field
evolution and the attendant clogging kinetics on a square
lattice porous network.

In our network simulations, each unit length bond cor-
responds to a pore and sites represent pore junctions. We
assume Poiseuille flow, in which the fluid flux through a
bond of radius ri is proportional to 2r4

i =p, where =p is
the local pressure gradient, when a fixed overall pressure
drop is imposed. Our simulations are based on (i) solving
the flow field of the network, (ii) constructing the proba-
bilistic motion of dynamically neutral suspended particles
in accordance with the local flow and the flow-induced en-
trance probability at each junction, (iii) implementing bond
blocking when mandated, and repeating (i)–(iii) each time
a bond gets blocked. Particles are injected at a finite rate

FIG. 1. Schematic clogging evolution in a parallel array of w
bonds of distributed radii. Bonds are blocked in decreasing size
order. The overall flow decreases more slowly in the latter stages
(vertical arrow). The total flow is inversely related to the time
until each blockage event, tk , k � w, w 2 1, . . . .
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which is proportional to the overall fluid flux; this corre-
sponds to a fixed nonzero density of suspended particles
in the fluid. This new feature is in contrast to many previ-
ous simulations, where particles were injected singly and
tracked until trapping occurred [2,5,6]. The latter corre-
sponds to an arbitrarily dilute suspension, a limit which is
useful for understanding the percolation process induced
by clogging [5–7,9]. However, to determine the time evo-
lution of a filter it is necessary to consider a finite-density
suspension.

For the trapping mechanism we adopt size exclusion, in
which a particle of radius rp is trapped within the first bond
encountered with rb , rp [7]. We assume that a trapped
particle blocks a pore completely and permanently. The
difference between partial and total blockage in a single
trapping event appears to be immaterial for long-time prop-
erties [6]. The overall trapping rate is then controlled
by the relative sizes of particles and bonds. For simplic-
ity and because it often occurs in porous media [10], we
consider the Hertz distribution of pore and particle radii,
respectively,

b�r� � 2are2ar2

, p�r� � 2re2r2

, (1)

with the ratio between the average bond and particle radii
s � 1�

p
a a basic parameter which determines the nature

of the clogging process.
First, consider the case of pores larger than particles

(s * 1). Many particles must therefore be injected be-
fore a sufficiently large particle arises which can block
the largest pore. Since the permeability of the system re-
mains nearly constant when only a few pores are blocked,
the time between successive particle injection events dur-
ing this initial stage is nearly constant. Once the largest
pores are blocked, it takes many fewer particles to block
the remaining smaller pores and clogging proceeds more
quickly. Thus the clogging time is dominated by the initial
blockage events.

To estimate the clogging time in this large-pore limit, let
us find the number of injection events before encountering
a particle large enough to block the largest bond. The
radius of this bond is given by the criterion [8]

Z `

rmax

2are2ar2

dr �
1
w

, (2)

that one bond out of w has radius rmax or larger. This
gives r

�b�
max � s

p
lnw. Similarly, the largest particle out

of N has radius r
� p�
max �

p
lnN . Thus N1 � ws2

particles
typically need to be injected before one occurs which is
large enough to block the largest bond. Continuing this
picture sequentially, the radius of the kth-largest bond is
given by Eq. (2), but with 1�w replaced by k�w; this gives
rk � s

p
ln�w�k�. Therefore Nk � �w�k�s2

particles need
to be injected before the kth-largest bond is blocked. Since
Nk decreases rapidly with k, the initial blockage events
control the clogging time T , whose lower bound is given
by T � N1�w . ws221. The factor of 1�w arises because
the particle injection rate is proportional to w for a fixed-
density suspension and a fixed pressure drop. In fact,
N1�w represents a relatively crude lower bound for T in
the large-pore limit, since clogging will occur far beyond
the first layer of pores.

The latter case where pore sizes are comparable or
smaller than particles (s & 1) is simpler, as each particle
injection event typically leads to the clogging of the first
pore entered. Now initial pores are blocked quickly, while
later pores are blocked more slowly because the overall
flow rate decreases significantly near the end of the clog-
ging process (Fig. 1). We argue that clogging is dominated
by the times for these later blockage events. First, let us
determine how the flow rate varies as the last few bonds get
blocked. Since only the smallest bonds remain open near
clogging, the permeability is determined by these smallest
radii. We estimate the radius of the kth smallest bond fromRrk

0 2are2ar2
dr � k�w, which gives rk � s

p
k�w. The

permeability of a parallel bundle of these k smallest pores
is then

k�k� �
kX

j�1

r4
j � s4

kX
j�1

� j�w�2 � s4k3�w2, (3)

while the initial permeability (obtained by setting k � w
above) is simply k�w� � s4w.

Since the total flow is proportional to the permeability
for a fixed pressure drop, the time increment tk between
blocking the �k 2 1�st-smallest and the kth-smallest pore
scales as

tk �
k�w�
wk�k�

�
w2

k3 . (4)

The factor w in the denominator again accounts for a par-
ticle injection rate proportional to w. The clogging time T
is now dominated by the time to block the smallest bond,
so that T . t1 ~ w2. Thus the relative pore and particle
radii drives a transition in the ultimate clogging behavior.
For s2 . 3, clogging is dominated by the initial blockage
events and T . ws221, while for s2 , 3 the last events
dominate, leading to T . w2.

For the small-pore limit, we carry this analysis further
and obtain the distribution of clogging times from which
the mean clogging time is divergent. Nevertheless, suitably
defined moments of the clogging time distribution scale
as w2. The clogging time distribution is directly related
to the radius distribution of the smallest bond, since this
bond ultimately controls the clogging of a single parallel
layer of bonds. For the Hertz distribution, the probability
that a given bond has a radius greater than or equal to r ,
B.�r�, is

B.�r� �
Z `

r
2are2ar2

dr � e2ar2

. (5)

Then the radius distribution of the smallest bond from
among w, Sw�r�, is given by [8]
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Sw�r� � wb�r�B.�r�w21 � 2awre2awr2

. (6)

The first equality expresses the fact that one of the w bonds
has (smallest) radius r , with probability b�r�, and the other
w 2 1 must have radii larger than r .

From the basic connections between permeability, pore
radius, and time scale [Eqs. (3) and (4)], and the fact that
the clogging time is dominated by t1, we deduce

T � t1 �
1
w

k�w�
k�1�

�
s4

r4
1

, (7)

while the clogging time distribution, Pw�T �, is directly
related to the smallest bond radius distribution through
Pw�T �dT � Sw�r�dr . Using Eqs. (6) and (7), we obtain
the basic result (independent of system length):

Pw�T � �
w

T3�2 e2w�T 1�2

. (8)

The power law applies in the time range w2 , t , w2N2.
The former limit corresponds to the size of the typical
smallest pore in a single realization, s�

p
w, while the lat-

ter corresponds to the smallest pore from among N real-
izations of the system, s�

p
Nw. The short-time cutoff in

Eq. (8) arises from those realizations where the smallest
bond happens to be anomalously large. Other coincident
particle and bond radius distributions lead to similar forms
for Pw�T �, but with different quantitative details. For ex-
ample, if Sw�r� � rm as r ! 0, then the long-time expo-
nent in Pw�T � is 2� m 1 5��4.

We test our predictions by simulations of the motion and
trapping of suspended particles in the lattice network. Our
algorithm is event driven to bypass the slowing down of
the flow as clogging is approached. At an intermediate
stage, there are a finite number of particles in the network,
consistent with a unit pressure gradient and a constant-
6020
density suspension. Particles are defined to be always at
lattice sites and each (including newly injected particles)
evolves by (i) moving to the next downstream site along
an outgoing bond i (with entrance probability equal to the
fractional flux into this bond), (ii) blocking the downstream
bond it has entered, or (iii) remaining stationary. The
probability of each of these possibilities is defined so that
the process corresponds to particles moving, on average,
at the local velocity.

To achieve this, each particle attempts to move to the
next junction, via the preselected bond, with probability
proportional to yi�ymax, where yi is the local bond veloc-
ity and ymax is the instantaneous largest particle velocity in
the system. If the attempt occurs, the particle either moves
to the next downstream site, or, if the particle is too large,
blocks the bond. After a single update of all particles, the
time is incremented by Dt � 1�ymax to ensure that, on av-
erage, a particle moving along bond i has speed yi .

After all particles undergo move attempts, N ~ fDt
new particles are injected into the network, where f is the
overall fluid flux. This ensures the correct absolute veloc-
ity for each particle. Since the time increment systemati-
cally increases as bonds get blocked, the particle injection
rate progressively slows. This is in contrast to earlier mul-
tiparticle filtration simulations, where injection rate was
decoupled from overall flow [7].

Figure 2(a) shows the clogging time distribution from
simulations on the square lattice and the bubble model of
the same size. The latter is a series of parallel bond ar-
rays with perfect mixing at each junction; this idealized
system has been previously found to account for the geo-
metrical aspects of clogging [6]. The agreement between
the two distributions is remarkably good, suggesting that
the schematic evolution proposed in Fig. 1 is quantitatively
correct. The tails of the distributions both appear to decay
as t23�2, and scaled data for the clogging time distribution
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FIG. 2. (a) Clogging time distribution for the bubble model (continuous curve) and the square lattice (data points) for length
L � 10 and width w � 20. Time units correspond to an initial injection rate of 0.05 particles per unit width per unit time. The
dashed line has slope 23�2. (b) Scaled clogging time distribution for square lattices of L � 10 and w � 20, 40, 60, 100, and 200
(right to left). The data are based on 10 000 realizations and are smoothed over a 12-point range. The dashed line is the prediction
of Eq. (8).
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FIG. 3. Width dependence of the moments �tk�1�k for k �
1, 1�2, 1�3, 1�4, and 1�6 (top to bottom). The dashed line cor-
responds to w2 growth.

for systems of various widths w also agree with the func-
tional form in Eq. (8) [Fig. 2(b)].

An important consequence of the power-law tail in the
clogging time distribution is a transition in the correspond-
ing moments

�tk� �
Z `

0
tPw�t� dt �

Z N2w2

w2
wtk23�2 dt . (9)

Here the short-time cutoff in Eq. (8) is approximated by
the lower limit in the integral. Consequently,

Mk�w� � �tk�1�k �

8<
:

w2N221�k k . 1�2
w2�ln N�2 k � 1�2
w2 k , 1�2 .

(10)

Thus the mean clogging will exhibit large sample-to-
sample fluctuation and diverge when the number of
realizations is infinite. In contrast, the moments Mk with
k , 1�2 are well behaved. This is illustrated in Fig. 3,
where Mk�w� varies erratically with w for k � 1 and 1�2,
but then grows smoothly as w2 for k # 1�3.

The behavior of Mk raises the question of when a fil-
ter is no longer useful. Waiting until complete clogging
is impractical because of large fluctuations in the clogging
time and late-stage poor filter performance. It would be
more useful to operate a filter only until the permeabil-
ity decays to a (small) fraction of its initial value, such
that reasonable flow and trapping efficiency are main-
tained, while minimizing fluctuations in this threshold
time. Simulations indicate that the time to reach per-
meability fraction f, tf , is proportional to w2�3f21�2 for
10210 & f & 1023, with the distribution of tf progres-
sively broadening for decreasing f (Fig. 4). Thus wait-
ing until the permeability decays to a fixed but not too
small fraction provides a reliable criterion for when a filter
should be discarded. A consequence of tf ~ w2�3f21�2 is
that the permeability decays as 1�t2 over a wide range. Be-
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FIG. 4. Probability that a filter with w � 200 reaches per-
meability fraction f at time tf , for f � 42n, with n � 2,
4, 6, 8, 12, 16, together with the time distribution until complete
clogging ( left to right).

cause of this rapid decrease, a practical filter needs to have
pores typically larger than particles to have a reasonable
lifetime. These issues and understanding the efficiency
of a filter throughout its useful life are currently under
investigation.
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