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We provide evidence for several novel phasesin the dilute limit of rotating Bose-Einstein condensates.
By exact calculation of wave functions and energies for small numbers of particles, we show that the
states near integer angular momentum per particle are best considered condensates of composite entities,
involving vortices and atoms. We are led to this result by explicit comparison with a description purely
in terms of vortices. Several parallels with the fractional quantum Hall effect emerge, including the

presence of the Pfaffian state.
PACS numbers: 03.75.Fi, 05.30.Jp, 67.40.—w

In rotating superfluid *He a vortex lattice forms which,
on scales large compared to the vortex lattice parameter,
has a velocity field indistinguishable from a rigid body
corotating with the container. The vortices only perturb
the fluid density significantly over a region of order the
coherence length, &, around the core of each vortex (of
the order of an angstrom). Hence the arrangement of the
vortex lattice is governed by minimizing the kinetic energy
of the fluid in the rotating frame. One may say that the
potential energy is“quenched” by the incompressibility of
the fluid.

In the Bose condensed alkali gases, although so far it has
proved difficult experimentally to investigate the rotational
properties of the condensates, there has been a vigorous
theoretical debate [1—3] about the stability (or otherwise)
of vortices in the condensates. At a mean field level (ap-
propriate for moderate density), the inhomogeneity of the
condensate density and the existence of surface waves due
to the harmonic well makes the description difficult. Nev-
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where we have used the trap energy, /ivK/m = hwg, as
the unit of energy and the extent, (#2/MK)'/*, of the har-
monic oscillator ground state as the unit of length. (Here
M is the mass of an atom and K the spring constant of
the harmonic trap.) The coupling constant is defined as
n = 4mia(h%/MK)~'/? where 7 is the average atomic
density and a the scattering length. The angular velocity
of the trap, w, is measured in units of the trap frequency.

In the dilute limit n < 1, which implies in existing
experimental traps that the number of atoms, N, would be
10 = N = 1000. Then the average coherence (or healing)
length is ¢ ~ 1/+/fia — . It has been shown previously
[6] that in thislimit the problem becomes two dimensional
and the Hilbert space may be truncated to the “lowest
Landau level” states [7], ¢,(z) = z"e I"/2, where m =
0 and z = x + iy in the plane normal to @. Indeed,
a o = 1 the problem is identical to the quantum Hall
problem, with @ replacing the magnetic field.
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ertheless the interparticle potential energy is still largely
unaffected by the presence of vortices in the limit where
the coherence length is small compared to the extent of the
condensate: it isthe kinetic energy (and the single-particle
trap potential) which determines the vortex positions.

In this Letter we show that when the coherence length is
comparableto the extent of the condensate completely new
effects occur. Thisis dueto the kinetic (and single-particle
trap) energy being quenched, by acombination of spherical
symmetry and the special properties of the harmonic well.
Hence the ground state in the rotating frame is determined
by the interparticle interactions alone, reminiscent of the
fractional quantum Hall effect. Indeed, we find stable
states that are related to those found in the Hall effect (al-
beit in the less familiar regime of filling fraction, v = 1).
These include “condensates’ of composite bosons of the
atoms attached to an integral number of quanta of angular
momenta, as well as the Laughlin and Pfaffian [4] states.

In arotating reference frame, the standard Hamiltonian
for N weakly interacting atoms in a trap is [5]

N
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We have determined the exact ground state, its energy
Ey(w), and excitation gap A for the Hamiltonian Eq. (1)
using MATHEMATICA for N = 8 and w = 1. In addition,
we have determined numerically the lowest eigenvalues
for N = 10 as a function of w. Lo(w), the angular mo-
mentum of the ground state, is plotted in Fig. 1 for N =
6 with n = 1/N. Angular momentum remains a good
guantum number as we have made no symmetry breaking
ansatz.

A corresponding plot for “He in a rotating container
would show jumps in the expectation value of Lo(w) as
successive vortices enter the system. The inhomogeneous
density of the condensate in a trap leads to more complex,
but similar, behavior in a mean field treatment [8] (appro-
priate in the high density limit). There are a number of
important featuresin Fig. 1, which are common to all val-
ues of N which we have studied.
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FIG. 1. Stable states for N = 6 in the rotating frame with
n =1/N.

First, at L = N thereisastate which corresponds [6] to
one vortex,

N
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where z, = (Zf’:] z;)/N is the center of mass coordinate
and |z|2 = 3V, |z;|2. From this point we will omit nor-
malization factors and the ubiquitous e ~'#"/2. This state
has an interparticleinteractionenergy E = nN(N — 2)/4
and becomes stableat w; = (1 — N»/4). (In addition, at
w; dl N = L > 1 states are metastable [9].)

Almost all of the other stable states can be labeled by
L = n(N — m) where n and m are non-negative integers
(this includes the Laughlin state n = N, m = 1). These
values are close to “n-vortex states’ (L = nN), a possi-
bility we will return to. However, the actual wave func-
tions for these states most closely resemble some [10]
used in the theory of composite fermions [11] in the Hall
effect.

We define
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[Note g = [T, Qy-1(z) and ¢ = [T, 01(z)]
Then the states of high overlap with the true states at

TABLE I.

L = n(N — m) may be written as
N

wn,m ({Zt}) = Z
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Table | shows the overlaps of i, , with the true ground
states for those L. Their construction ensures that angular
momentum is used economically to lower the energy: any
given particle pair, i and j, will at most be associated with
two factors of (z; — z;).

Theinterpretation of the statesat L = n(N — m) isthat
a particle in association with » quanta of angular mo-
mentum is a particularly stable entity in the vicinity of
L = nN. As L isreduced, N — m particles remain with
al n quanta and m have al the angular momentum re-
moved. This is our main result, which occurs at small
angular momenta. Thisis reminiscent of the “bound state”
composite fermions of electrons and vortices[12]. We will
return to this point.

We will now attempt to reconcile the composite bo-
son states to the vortex states found in the nonlinear
Schrédinger equation [3]. The following argument indi-
cates a connection. Consider incompressible irrotational
fluid (“helium”) in a two-dimensional circular container,
of radius R, with n point vortices at radial coordinates r,,.
There the angular momentum of the fluid is [13]

L(fra}) = N(ﬂ - Z(ra/R)2>; ©)
a=1

i.e., the angular momentum is reduced from L = nN by
the vortices being off center.

To test this notion, we first localize the vortices (re-
sulting in a nonrotationally invariant state) by superpos-
ing states with different L. Using L = 10 and L = 8 for
N = 5 (the Pfaffian state rulesout N = 6) yields the con-
tour plot of probability density, Fig. 2. The two dimples
might be interpreted as two off-center vortices (hence the
angular momentum is lower than L = 2N). The figure is
reminiscent of the figures in [8], although the changes in
density are rather small by comparison. Note, however,
the superposition is certain to create features periodic with
€026, where 6 is the polar angle.

To quantify these ideas, we introduce the lowest Landau
level vortex factors, [T\ (£, — z:), with complex vortex

On (Zjl)Qn (ij) e Qn(zj(zv—m)) :

Stable states for N = 8: the upper number is their angular momentum and the lower is their overlap with the O wave

functions. # indicates that the wave function can also be written (or derived from) a Pfaffian state.
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FIG. 2. The probability density for the superposition of the
states L = 2N and L = 2N — 2 for N = 5 with “dimples’
reminiscent of vortex cores.

coordinate {,. A complete set of particle states of angular
momentum L is obtained using n = L vortices:

n n N
(z)) = f [T e ¥ 6z TTT1 - 20,
B=1 B=1i=1

where |£]> = X" _, |Z.|*>. This follows from the result
[14] that an nth order polynomia in the z's may be ex-
panded using the products of powers of the elementary
symmetric polynomias, C,, 0 = r < n,
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Although there is no need to write wave functions of both
the particle, z;, and the vortex coordinates, ., it will be
convenient.

It will be useful to note the form of the resulting
particle wave function, ¢, when there is one vortex. The
construction implies the natural one-vortex states are
d,({") = {*P/(p! ). The corresponding particle states
ae yy—p, * C,({z;}) for 0 = p = N, and, for p > N,
Yn-p, = 0. Note that the angular momentum of the
particlesisL = N — p, consistent with the special cases:
Yy = 1,1i.e, placing avortex in this state has no effect on
the nonrotating condensate; Y- = Zﬁ\;l 7 = z¢; and
o = [, z:, i.e, a“simple” single vortex.

It is tempting to relate the stable states at L =
n(N — m), to Eq. (3), asbeing n vorticesin state p = m,
with associated displacement of the vortex determined by
(1¢1?), = p + 1. However, thisimpliesr? = p + 1 and
this leads to a contradiction unless L ~ N? (using the
empirical relation p = m = n), which istoo restrictive.

Moreover, this purely vortex description, ¢ (¢), requires
more vortices than »n [in L = n(N — m)]. For example,
L = N: expanding the product in Eq. (2) we seethereisa

8

term zY¥ = C;({z;})N whose generation requires N vortex
factors (even more for larger L). In addition, the number
of vortices is not fixed, as the number in the vortex state
.V is indeterminate since they do not affect the particle
wave function (in a sense it is the vortex vacuum state).
Thisisin stark contrast to the incompressible (¢ — 0) case
where the number of vorticesisfixed and they are classical
entities.

It might be supposed that, although there may be afluc-
tuating vortex population at large vortex quantum numbers,
thisisin the tail of the particle wave function and the de-
scription may be simple near the center of the trap. This
is determined by computing the single-vortex density ma-
trix, p¥(Z, '), for the exact state L = 2N — 2, N = 6
(Fig. 3).

If the displaced vortex picture were correct, one might
expect a factor in the vortex wave function of the form
(&7 — &)?* corresponding to the vortices rotating around
the center of the trap. This factor alone would lead to the
following eigenvalues, p), (with corresponding eigenvec-
tors¢™), of p¥: py = 5, pl = 3,andpy = ;. Ascanbe
seen from Fig. 3, thisisnot the case. The most pronounced
featureisamaximumat m = 0. The vortices tend to con-
dense, in the m = 0 state, not to separate in |£; — &5 .
(Further evidence comes from evaluating the particle den-
sity matrix [9].)

These difficulties in describing the i, , States purely
in vortex variables occur because the particles are binding
to the vortices. This leads to a strongly correlated state
whose description requires additional vortex variables if
they are used alone. One interpretation uses ideas from
the quantum Hall effect [12]: At the center of each vortex
there is a decrease in the particle density. Thus, in terms
of interparticle interactions, thisis alow energy region for
an additional particle.

Mathematically this is described most easily for the
Laughlin state, using N vortices, ¢,, with a factor

?,/i#:a(ga — z;) where the ath particle experiences no
suppression of its amplitude: it is “bound.” This can be
expressed as

N
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FIG. 3. Eigenvalues (p,,) of the single vortex density matrix
for eigenfunctions ¢ for L = 2N — 2 for N = 6. The trace
is normalized to unity, having suppressed the weight associated
with the vortex “vacuum” state, m = N.
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[Noting ¢7" and (—1)"n*"e"", respectively, play the
roles[7,15] of adeltafunction and its nth derivative within
the lowest Landau level.] That is, the deltafunction factors
bind the ith particle to the ith vortex.

To generate the states ¢, ,, We use the derivatives of the
lowest Landau level delta function so that

ul 2 *
Yum({zi}) = ] [1d%¢s e ert
B=1

X ¢nm({§;}) l_[(ga - Zj)s

aFtj
where
Nov-1en s
& —1l—n sk * *
ql)n,m({ga}) = l_[ g,B Z ’}'11 an T g?’: ’
B=1 Y1<Y2<<Ym

which can be interpreted as a condensate of (N — m)
composites (each consisting of an atom and a vortex) in
the state, ¢*" with r = (N — 1 — n). The remaining
unbound atoms remain condensed in the single-particle
ground state. [The states L = n(N — m) are also selected
using a composite fermion approach [16].]

The remaining stable states are consistent with the
bosonic Pfaffian state [4,17], at L = $N(N — 2) for even
NandL = 3(N — 1)* for odd N.

W) = [ — 2 Pt (Z 1 Z_),

i<j -

! J

where the Pfaffian is defined

1 1 1
i (Zi - Z/) B ﬂ[(m — 22) (z3 — z4)
1

(zv—1 — zv) |

where A denotes antisymmetrization of the following
product. (Thisis generalized for odd N by omitting one of
the particles in each term of the antisymmetrization [14].)
The overlaps of " with the exact ground statefor N = 5
andL =8 N=6andL =12,andN =7and L = 18
are 0.912, 0.90%, and 0.807.

Some nearby stable states, e.g., L = 10and L = 14, are
well described as simple modifications of the Pfaffian state.
This uses the conjecture (which has been demonstrated by
direct evaluation for 4 = N = 8) that the Pfaffian state
may be represented by a product of two Laughlin states
for N/2 particles [or, for odd ~, acluster of (N — 1)/2
and one of (N + 1)/2]:

gl =S [ @ -2 [] @ - a7
i<jEo k<lEo,
where the two subsets, o and o, each have N /2 particles
[N —1)/2 and (N + 1)/2 for odd N]. S indicates that
the wave function is symmetrized over the distribution of
the particles into these subsets. These two well-correlated
clusters appear to be “dual” to the clusters of Halperin [18]

which have ahigh internal energy, due to the lack of nodal
factors.

For example, thestate N = 6, L = 14 hasoverlap 0.967
with a state with two quanta of angular momentain the cen-
ter of mass motion of the clusters (defining Z, = > ic,, i,
b=1o0r2):

Py = Sz — Z20)* gt

The state N = 6, L = 10 has overlap 0.97> with a state
where there is one factor of center of mass motion and one
vortex has been “removed” from one of the clusters:

PGy = Sz -zt [T Y —
PEOT q<p.qE0T ip T g
(The apparent asymmetry of the last factor involving
only the first cluster, o, is illusory due to the overall
symmetrization.)

In conclusion, this Letter provides evidence that the
weak coupling limit of rotating Bose-Einstein condensates
contains some novel phenomena, even at moderate angular
momenta.

We thank J.T. Chalker, N.R. Cooper, D.S. Rokhsar,
and R. A. Smith for helpful discussions. We are grateful
to P. Carra and the ESRF for hospitality while this work
was completed and ITP (PHY-94-07194) during the
early stages of the work. We acknowledge financia
support from the EPSRC GR/L28784, GR/K6835, and
GR/L29156.

[1] A.A. Svidzinsky and A.L. Fetter, e-print cond-mat/
9811348.
[2] D.S. Rokhsar, Phys. Rev. Lett. 79, 2164 (1997).
[3] A.L. Fetter, e-print cond-mat/9811366.
[4] G. Moore and N. Read, Nucl. Phys. B360, 362 (1991).
[5] F. Dafovo, S. Giorgini, L.P. Pitaevskii, and S. Stringari,
Rev. Mod. Phys. 71, 463 (1999).
[6] N.K. Wilkin, J.M.F. Gunn, and R.A. Smith, Phys. Rev.
Lett. 80, 2265 (1998).
[7] S.M. Girvin and T. Jach, Phys. Rev. B 28, 4506 (1983).
[8] D.A. Butts and D. S. Rokhsar, Nature (London) 397, 327
(1999).
[9] N.K.Wilkin, J.M.F. Gunn, and R. A. Smith (unpublished).
[10] G. Dev and J.K. Jain, Phys. Rev. B 45, 1223 (1992).
[11] Composite Fermions: A Unified View of the Quantum Hall
Regime, edited by O. Heinonen (World Scientific Publish-
ing Co., Singapore, 1998).
[12] N. Read, Surf. Sci. 362, 7 (1996).
[13] P.G. Saffman, Vortex Dynamics (Cambridge University
Press, Cambridge, 1995).
[14] M.L. Mehta, Matrix Theory: Selected Topics and Useful
Results (Les Editions de Physique, Les Ulis, 1989), pp. 15
and 254.
[15] V. Bargmann, Rev. Mod. Phys. 34, 829 (1962).
[16] N.R. Cooper and N.K. Wilkin, Phys. Rev. B (to be
published).
[17] N. Read, Phys. Rev. B 58, 16 262 (1998).
[18] B.I. Haperin, Helv. Phys. Acta 56, 75 (1983).



