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Strong Anomaly in Diffusion Generated by Iterated Maps
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We investigate the diffusion generated deterministically by periodic iterated maps that are defined
by xt11 � xt 1 axz

t exp�2�b�xt�z21�, z . 1. It is shown that the obtained mean squared displacement
grows asymptotically as s2�t� � ln1��z21��t� and that the corresponding propagator decays exponentially
with the scaling variable jxj�

p
s2�t�. This strong diffusional anomaly stems from the anomalously broad

distribution of waiting times in the corresponding random walk process and leads to a behavior obtained
for diffusion in the presence of random local fields. A scaling approach is introduced which connects
the explicit form of the maps to the mean squared displacement.

PACS numbers: 05.45.Tp, 05.40.Fb, 05.60.Cd
The concept of deterministic diffusion is already well es-
tablished and has been observed in a broad range of chaotic
dynamical systems, both conservative and dissipative
[1–5]. Most of the examples display either normal dif-
fusion, for which the mean squared displacement (MSD)
grows linearly in time, or anomalous diffusion where the
MSD follows asymptotically as

s2�t� � tn , (1)

with n , 1 for subdiffusion [1,4], and n . 1 for enhanced
diffusion [3,4]. Such diffusional anomalies have been ob-
served, among other systems, in amorphous semiconduc-
tors [6] and in polymer networks [7] for n , 1, and in
rotating laminar fluid flows [8] for n . 1. Other examples
include both numerical and experimental studies [9,10].
Another diffusional anomaly which has been less explored
is the case where the MSD grows logarithmically in time,
s2�t� � lnb�t�. This type of anomaly, which we refer to as
strong anomaly, has been derived in classical models such
as the Sinai model [11], in some aperiodic environments
[12,13], and for random walks on bundled structures [14].
Interestingly, recent numerical simulations have shown that
strong anomaly occurs often when a system, which other-
wise displays simple subdiffusive behavior (n , 1), expe-
riences an additional field [15].

One-dimensional maps are probably the simplest dy-
namical systems which produce normal and anomalous
diffusion processes [1,3,4]. These maps generate sets of
trajectories according to a rule

xt11 � xt 1 F�xt� (2)

with the following symmetry properties of F�x�: (i) F�x�
is periodic, with a periodicity interval set to 1, F�x� �
F�x 1 N�, where N is an integer, and (ii) F�x� has an
inversion antisymmetry; namely F�x� � 2F�2x�. Varia-
tions of these maps have been investigated by taking into
account, for instance, quenched disorder [16], or an ad-
ditional uniform bias [17] which break the symmetry of
the map. Geisel and Thomae [1] considered a rather wide
family of maps which obey
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F�x� � axz , for x ! 10 , (3)

with z . 1. Under certain conditions these maps lead to a
MSD s2�t� � �x2�t�	 � tn , where n depends on the pa-
rameter z of the map, so that z . 2 leads to n , 1. The
mechanism that generates this anomalously slow diffusion
can be understood in terms of a random walk picture with
a broad distribution of waiting times [1,4]. The symmetry
properties described above, together with Eq. (3), define
a translationally invariant discontinuous function. The lat-
ter corresponds to a series of cells given by N 2 0.5 #

x , N 1 0.5, where each cell has a fixed point at its cen-
ter x � N . If we first restrict ourselves to the central cell
with the fixed point at x � 0, then an injection at xi . 0
starts an iteration inside the central cell. This iteration pro-
cess comes to an end when the “transfer” region out of the
cell is reached; namely when xt . 0.5. Here a jump into
a neighboring cell is performed and an iteration process
in this new cell restarts. Depending on whether this in-
jection has been on the right or the left side of the new
fixed point, the iteration leads to an increasing or decreas-
ing series of 
xt�. This results in a jump to the right or
the left cell, respectively. The closer is the injection point
to the fixed point, the longer is the residence time within
the cell. Although the process itself is deterministic, the
injection into the neighboring cells can be viewed as ran-
dom. Since the injection point can be arbitrarily close to
the fixed point of a cell, the residence time within a cell
can be arbitrarily long. The process is described therefore
as a random walk among cells with waiting times which
are broadly distributed so that one can readily apply the
continuous time random walk framework [4,6]. The pa-
rameter z determines the universality class of the maps
given by Eqs. (2) and (3). The latter have been shown to
lead to a power-law t2z��z21� behavior of the waiting time
distribution (WTD). For z . 2 these WTDs have no finite
moments and the corresponding MSD grows anomalously
in time according to s2�t� � t1��z21� [1,4].

Our aim here it is to introduce a map which leads to
a logarithmic growth with time of the MSD. In order to
© 2000 The American Physical Society
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achieve this strong anomaly, s2�t� � lnb�t�, one needs it-
eration rules which result in WTDs that decay even more
slowly than the power law mentioned above. The under-
lying idea might be to modify the maps in Eqs. (2) and
(3) in a way that instead of dealing with a single exponent
z, as in Eq. (3), which determines the MSD on all times
scales according to Eq. (1), one should create a hierarchy
of exponents, which depend on the distance x from the
fixed point. Here we take advantage of the fact that in the
anomalous case different spatial regimes of the map domi-
nate different time scales of the MSD. This suggests the
map in Eq. (2) with

F�x� � axz exp�2�b�x�z21� , (4)

for 0 # x , 0.5, with z . 1, and b . 0. The map in
Eq. (4) generates WTDs which are dominated by a loga-
rithmic decay rather than by a simple power law. It reduces
to the Geisel-Thomae map when b � 0. Figure 1 shows
the map in Eqs. (2) and (4), for three successive cells. The
extremely broad WTD is reflected in the fact that in the
vicinity of the fixed points the slope is hardly distinguish-
able from the value 1. If the slope were indeed 1, then each
iteration step would reproduce itself, which would corre-
spond to an infinite trapping time within a cell.

In order to obtain from Eqs. (2) and (4) the waiting time
t�xi� as a function of the injection point xi , we turn the
differences quotient xt11 2 xt � axz

t exp�2�b�xt�z21�,

FIG. 1. The map xt11 � xt 1 F�xt�, defined by Eq. (4) with
z � 2, b � 0.5, and a � 4e.
which close to the fixed point is small, into the correspond-
ing differential equation dx�dt � axz exp�2�b�x�z21�.
Since in the iteration process a cell is left when xt $

1
2 ,

the waiting time t�xi� in the cell, as a function of the
injection point xi , is

t�xi� �
Z 0.5

xi

dx
F�x�

� 2T
Z �2b�z21

�b�xi�z21
eydy

� T exp��b�xi�z21� , (5)

where T � �ab�z21��z 2 1��21. If one assumes no cor-
relations between subsequent jumps from cell to cell, the
distribution c�t� of residence times can be derived from
the distribution h�xi� of injection points xi by c�t�dt �
h�xi�dxi [1]. In the limit of t ! `, h�xi� ! h�xi � 0�,
independent of xi . Calculating the differential jdxi�dtj by
means of Eq. (5) yields asymptotically,

c�t� �
T

t lnz��z21��t�T �
, z . 1 . (6)

Similiar to the maps investigated earlier [1,4] this distri-
bution does not possess finite moments. The condition
z . 1 yields z��z 2 1� . 1 and ensures the normaliza-
tion of c�t�. Figure 2 displays the distribution of waiting
times for z � 1.25, z � 1.5, and z � 2, as obtained by
numerical iterations of the maps in Eqs. (2) and (4). The
agreement with Eq. (6) is very good.

According to the continuous time random walk theory
[6] the MSD s2�t� can now be derived by means of the
relation, in Laplace space [4,6,18],
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FIG. 2. Double-logarithmic plot of c�t� t versus ln t for z �
1.25 (open circles), z � 1.5 (filled circles), and z � 2 (open
triangles). The slopes of the lines correspond to the theoreti-
cal predictions z��z 2 1� of Eq. (6). In order to record the
extremely broad distribution, we counted the waiting times in
logarithmically equidistant time boxes. In the numerical simu-
lations averages have been taken over 20 000 realizations. For
each realization t � 108 iteration steps have been performed.
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L
s2�t�� �
ĉ�s�

s�1 2 ĉ�s��
, (7)

where L
s2�t�� denotes the Laplace transform of s2�t� and
ĉ�s� � L
c�t�� �

R`
0 e2stc�t� dt. Starting from Eq. (6),

one finds, following Havlin and Weiss [18], that

ĉ�s� � 1 2
A

�ln�1�s��z��z21� , s ! 0 . (8)

The asymptotic time dependence of the MSD for t ! `

can be now derived from Eqs. (7) and (8) in the limit
s ! 0 by using a Tauberian theorem [19], which yields

s2�t� � ln1��z21��t�T � . (9)

The map introduced by Eq. (4) drastically changes the
power-law anomaly obtained by Geisel and Thomae,
t1��z21�, to a logarithmic strong anomaly, Eq. (9). Figure 3
shows the MSDs corresponding to z � 1.25, z � 1.5, and
z � 2. Again, there is a good agreement with the continu-
ous time random walk description. Interestingly, the case
z � 1.25 in Figs. 2 and 3 leads to the behavior obtained
in the Sinai model, namely, s2�t� � ln4�t� [11].

Equation (9) can be also obtained on more general
grounds. We argue that the time t needed to pass n cells is

t �
nX

i�1

ti �
nX

i�1

t�xi� , (10)

where ti is the time spent in the ith cell. In the case that
the WTD has a mean, limn!`� 1

n

Pn
i�1 ti� � �t	 , `, one

obtains a linear increase in n of the time t, t � �t	n. If we
assume the absence of long-range correlations, the number
of jumps among the cells scales with the distance according
to n � x2, which results in normal diffusion, s2�t� � t.
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FIG. 3. The MSD s2�t� plotted double logarithmically versus
ln�t� for the three values of z in Fig. 2. The slopes of the
lines correspond to the theoretical prediction of Eq. (9). Inset:
s�t� � s2�t�� ln1��z21� t versus time t for the same values of z
as in Fig. 2 represented by the same symbols.
6000
When the waiting times ti originate from an anomalously
broad distribution without a finite mean, the time t in
Eq. (10) is dominated by the longest of the n waiting times,
which is in turn determined by the injection point xmin,
which is the closest to the fixed point. Since the smallest
of n random numbers, here given by the injection points xi

with 0 # xi # 0.5, is xmin � 0.5�n [20], this yields t !
T exp��b�xmin�z21� � T exp��bn�const�z21�. Because of
the relationship n � s2�t�, this leads to the time depen-
dence of the MSD according to Eq. (9). Since t�xmin� is
related to F�x� through the left side of Eq. (5), the above
arguments can be summarized by

t ! T
Z 0.5

1�s2�t�

dx
F�x�

. (11)

For F�x� � xz with z . 2, this scaling relation results in
s2�t� � tn with n � 1��z 2 1�, which is consistent with
[1], while for F�x� in Eq. (4) this results in Eq. (9).

In order to get a detailed insight into the dynamics gen-
erated by an iterated map of the type defined by Eq. (4),
we derive the corresponding propagator P�x, t�, the prob-
ability that after t iterations the achieved distance is x.
According to Eq. (5), for all iteration series with an injec-
tion point smaller than xin�t� � b ln1��z21��t�T � the tra-
jectory resides within the cell during time t. As has been
shown above, in this strongly non-self-averaging system,
one can neglect all shorter waiting times in comparison
with the longest one. Therefore, the particle is almost al-
ways trapped in the cell with the smallest injection point
reached up to the considered time t. Then, the probability
to be trapped after n jumps among the cells is

P�n, t� � �1 2 W�t��n21W �t� � W�t� exp�2B�t�n� ,

(12)

where B�t� � ln
1��1 2 W�t��� and where the sticking
probability W�t� of a single jump is equal to the probabil-
ity that the corresponding injection takes place within the
regime N 2 xin�t� , x , N 1 xin�t� around the fixed
point at x � N , which leads to W�t� � 2xin�t�. This trap-
ping approach takes advantage of the weak logarithmic de-
pendence of W�t� on t given by xin�t�, which leads to a
sticking probability that is unaffected by the time already
spent in the preceding cells. In contrast to this, in the
Geisel-Thomae map [1,4], xin�t� increases with a power
of t, which introduces a memory which is reflected in the
nonexponential decay. In order to express the propagator
in terms of the distance x one should calculate the sum

P�x, t� �
X̀
n�0

F�n j x�P�n, t� , (13)

where F�njx� is the distribution of performed cell jumps
n at a given distance x which for n ¿ x2 is

F�njx� � F�0jx� exp

∑
2x2

2n

∏
. (14)

If we insert W�t� � 2xin�t� into Eq. (12), and after the
transition to the continuum case apply the steepest decent
method, we obtain
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FIG. 4. The propagator in a scaling fashion according to Eq.
(15) for two times, t � 105 (open circles) and t � 108 (filled
circles). The theoretical slope 1, is given by the solid line.

P�x, t� � P�0, t� exp�2j�, j � jxj
. q

s2�t� , (15)

with P�0, t� � �2
p

s2�t� �21. The exponential behavior of
P�x, t� in Eq. (15) strongly differs from the propagator that
corresponds to the Geisel-Thomae map, where P�x, t� �
exp�2�jxj�

p
s2�t� �2��22n�� with n � 1��z 2 1� [4]. The

exponential behavior is reminiscent of the short time scal-
ing behavior of the one-dimensional propagator calculated
within the continuous time random walk for power law
WTDs [21]. The propagator in Eq. (15) can be also de-
rived from the WTD, Eq. (6), within the continuous time
random walk formulation [18].

Figure 4 shows the decay of the propagator for two dif-
ferent times in a scaling fashion for z � 1.5. The data col-
lapse strongly supports the scaling prediction of Eq. (15)
and the slope is in excellent agreement with the theoretical
value 1. The simple exponential decay of the propagator
has also been analytically derived for the Sinai model [22],
where s2�t� � ln4�t�, and has been found in biased diffu-
sion on percolation [23]. In the latter case recent numerical
results yield s2�t� � lng�e��t� where the parameter e de-
termines the strength of the field [23]. Our maps generate
diffusion of the Sinai-type (MSD and propagator) with a
broad range of exponents 1��z 2 1�, z . 1. If one applies
scaling arguments, as used in [24] for the Sinai-model, one
can show that this new class of dispersive maps can be re-
garded also as simple models which show a 1�f power
spectrum with �ln f�1��z21� corrections.
In summary, we have introduced a new family of peri-
odic maps which lead to strong anomaly in the generated
diffusional process. The MSD s2�t� has been shown to
grow logarithmically in time, s2�t� � ln1��z21��t�, where
the parameter z determines the universality class of the map,
and the propagator is exponential in the scaling variable
jxj�

p
s2�t�. This behavior is of the Sinai-type anomaly.

In particular, we obtain the Sinai result [11] for z � 5�4.
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