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Adaptation to the Edge of Chaos in the Self-Adjusting Logistic Map

Paul Melby, Jörg Kaidel, Nicholas Weber, and Alfred Hübler
Center for Complex Systems Research, Department of Physics, University of Illinois at Urbana-Champaign,

1110 West Green Street, Urbana, Illinois 61801
(Received 28 February 2000)

Self-adjusting, or adaptive, systems have gathered much recent interest. We present a model for self-
adjusting systems which treats the control parameters of the system as slowly varying, rather than con-
stant. The dynamics of these parameters is governed by a low-pass filtered feedback from the dynamical
variables of the system. We apply this model to the logistic map and examine the behavior of the control
parameter. We find that the parameter leaves the chaotic regime. We observe a high probability of
finding the parameter at the boundary between periodicity and chaos. We therefore find that this system
exhibits adaptation to the edge of chaos.

PACS numbers: 05.45.Gg, 05.45.Pq, 05.65.+b
Self-adjusting, or adapting, systems are ubiquitous
in nature. Living systems are constantly changing their
own properties in response to their environment. For
example, the Asian firefly will adjust its flashing fre-
quency to match the frequency of outside stimuli, such
as the flashing of another firefly [1]. Because of the
importance of adaptation in natural systems, there have
been many studies which try to characterize evolutionary,
adaptive behavior [2,3]. Many of these studies show
that adaptive systems will adapt to a new state at the
boundary of chaos and order, called the edge of chaos.
Packard [4] showed that this effect occurred for a popu-
lation of cellular automata rules evolving with a genetic
algorithm. Pierre and Hübler [5] studied two competitive,
adaptive agents which used both control and modeling
to predict the behavior of the logistic map and found
that, over time, the agents use a control which places the
logistic map at the edge of chaos. The edge of chaos
also occupies a prominent position because it has been
found to be not only an optimal setting for control of
a system [6], but also an optimal setting under which
a physical system can support primitive functions for
computation [7].

We suggest a new model for self-adjusting systems, as
proposed by Ritz and Hübler [6]. An adjustable system
is a system where the control parameters of the system
are not constant in time. Control parameters are distin-
guished from dynamical variables through a separation of
time scales, i.e., the control parameters vary much more
slowly than do the dynamical variables [8]. The dynamics
of the control parameters is simple, overdamped motion
without an attractor. If the forcing function for the pa-
rameter depends only on the system itself, the system is
called self-adjusting. We introduce a self-adjusting logis-
tic map, using a forcing function which is a low-pass fil-
tered feedback from the dynamical variables. We find that
this map exhibits adaptation to the edge of chaos.

The logistic map has a dynamical variable xn and pa-
rameter a and is a function of time, n:
0031-9007�00�84(26)�5991(3)$15.00
xn11 � axn�1 2 xn�, 0 # xn # 1, 0 # a # 4 .
(1)

The parameter a determines the type of dynamics which
occurs for the dynamical variable, xn [9]. If 0 , a , 3,
then the dynamics of xn has a stable fixed-point attractor.
For intermediate values, 3 , a , 3.569 the dynamics of
xn is periodic. For 3.569 , a , 4, the dynamics of xn

is mostly chaotic. There are, however, values of the pa-
rameter in this range which lead to periodic behavior of
xn. These values are called periodic windows. a � 3.84 is
contained in the well-known period 3 window. The edge of
chaos refers to values of a which lead to periodic (chaotic)
behavior in xn and with only a small change would lead to
chaotic (periodic) xn dynamics. Thus, values of a which
are very near to 3.569, or are very near to the periodic win-
dows, are at the edge of chaos.

If the parameter, a, changes slowly with time, as in

an11 � an 1 efn, 0 # an # 4 ,

n � 0, 1, 2, . . . ,
(2)

where fn is a forcing function, and e is a small constant,
the logistic map becomes an adjustable system. If the forc-
ing, fn, is a function, g, of only the dynamical variable, xn,
the logistic map is self-adjusting. Because of the require-
ment of a separation of time scales, a low-pass filter is a
logical choice. By damping out the high frequency terms,
both the requirements of overdamped motion and separa-
tion of time scales can be achieved. In addition, low-pass
filters are common in natural and experimental situations.

The low-pass filtering can be achieved in numerical
simulations by a Fourier analysis of the time series for
xn. If N time steps are used, the Fourier sine and co-
sine coefficients are given by bn0 � �1�N�

PN21
t�0 x�t 1

n 2 N 1 1�, ank � �2�N�
PN21

t�0 x�t 1 n 2 N 1 1� 3

sin�2pkt�N�, and bnk � �2�N�
PN21

t�0 x�t 1 n 2 N 1

1� cos�2pkt�N� for k � 1, 2, . . . , �N 2 1��2 where
k is the frequency. If N is odd, an extra term is
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needed: bn�N11��2 � �1�N�
PN21

t�0 x�t 1 n 2 N 1 1� 3

cos�p�N 1 1�t�N�.
A low-pass filter with dc cutoff and a very low frequency

cutoff would keep only terms an1 and bn1. The back
transformation would then become

x̄n � an1 sin

µ
2pn
N

∂
1 bn1 cos

µ
2pn
N

∂
. (3)

If the forcing is only applied once every N steps, and is
evaluated when n is a multiple of N , fn becomes simply

fn �

Ω
ex̄N � ebn1, if n � iN ,
0, if n fi iN , i � 1, 2, 3, . . . .

(4)

Numerical simulations of the self-adjusting logistic map
were performed. N ¿ 1 and e ø 1 were used to ensure
a good separation of time scales. Figure 1 shows the time
dependence of three different initial parameter values. For
a0 � 3.5, there is no change in a with time. The limiting
dynamics of xn when a � 3.5 is periodic. However, the
dynamics of a for both the initial values a0 � 3.8 and
a0 � 3.9 shows a ragged time dependence until a value
of a is reached that leads to a periodic limiting dynamics
for xn. The system leaves the chaotic regime and settles
on a periodic dynamics. The limiting value of a leads to
periodic behavior in xn. However, only a small change in
this limiting value is necessary to create chaotic dynamics
in xn. Therefore we say that the system has adapted to the
edge of chaos.

To illustrate adaptation, 300 initial values of the parame-
ter, a0, were taken evenly over the interval [3.4:4]. Fig-
ure 2 shows a histogram for the distribution of parameter
values for two times, n � 0 and n � 60 000. As can be
seen, the initial distribution is flat over the interval [3.4,4].
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FIG. 1. Time dependence of three initial parameter values.
a � 3.5 corresponds to periodic motion, while a � 3.8 and
a � 3.9 correspond to chaotic motion. The final value of
a0 � 3.8 is 3.74 (period 5) and the final value of a0 � 3.9
is 3.96 (period 4). For this simulation, N � 20 and e � 0.1
were used.
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At n � 60 000, the probability is very small for values of
the parameter, a, whose limiting dynamics is chaotic. The
probability is very high, however, for those values of a
which have a limiting dynamics which is periodic. In most
cases, the system has evolved to the periodic windows of
the system, which are labeled in the figure. This high
probability at values of a which are at the edge of chaos
is an alternative description of adaptation to the edge of
chaos, and is satisfied by this system. Initial parameter
values which lead to periodic behavior have not changed.
This observation leads to an approximation for the behav-
ior of the low-pass filtered dynamics, x̄n:

x̄n�a� �
Ω

dn, if a leads to chaotic x dynamics,
0, if a leads to periodic x dynamics, (5)

where dn is a nonzero number. Equation (5) can be under-
stood in terms of the recurrence time and power spectrum
of the xn dynamics of the logistic map. Periodic behavior
has, by definition, a finite recurrence time. This leads to a
power spectrum which has a lowest frequency v0, which is
proportional to the inverse of the recurrence time. Chaotic
dynamics, however, has an infinite recurrence time and
thus its power spectrum does not have a lowest frequency
component [10]. Therefore, if the cutoff frequency of the
low-pass filter is vc, a condition on the low-passed dy-
namics can be made:

x̄n�a� � 0 if vc , v0�a� , (6)

where v0�a� is the lowest frequency of the xn dynamics
with parameter value a.

To understand the ragged time dependence in Fig. 1, we
look at the autocorrelation function, C, of the feedback,
fn:

C�j� � �fnfn1j	 �
1
S

n�SX
n�0

fnfn1j , (7)
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FIG. 2. Distributions of parameter values between 3.4 and 4.
The initial distribution at n � 0 is flat, and the final distribution
at n � 60 000 clearly shows a high probability at the edge of
chaos, in the periodic windows. The period of each window
is labeled above the corresponding peak. N � 20 and e � 0.1
were used in this simulation.
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FIG. 3. (a) shows the autocorrelation function for a random
data set, while (b) shows the autocorrelation function for the
feedback, fn. Both functions are normalized to C�0�. N � 20
and e � 0.1 were used.

where S is the number of time steps taken while the pa-
rameter is still changing. A random data set will be d

correlated, as in

C�j�
C�0�

�

Ω
1, j � 0 ,
0, j fi 0 . (8)

A comparison of the autocorrelation function of a random
data set and the feedback, fn, is shown in Fig. 3. As can
be seen, the feedback is very nearly d correlated, which
means that the ragged time dependence observed in Fig. 1
is a diffusive, random walk motion.

We have shown that, for the self-adjusting logistic map,
initially chaotic states adapt to periodic states which are
at the edge of chaos. Our model uses a low-pass filtered
feedback from the dynamical variables to the parameter
of the system. This approach is different from previous
studies which have used cellular automata, genetic algo-
rithms, or neural networks to drive the adaptation. Our
model is much simpler, using only feedback for adapta-
tion. A simple, feedback-based model is more applicable
to many physical systems which do not have gene codes or
memories. We feel that adaptation to the edge of chaos is a
generic property of systems with a low-pass filtered feed-
back, independent of both the form of the low-pass filter
and the specific system under study. The low-pass filtered
feedback exploits basic properties of periodicity and chaos,
and so adaptation toward the edge of chaos should be a
common property of such systems.
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