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Autodetachment of Doubly Excited States in Nonhydrogenic Negative Ions
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A semiclassical model is developed to describe the two-electron dynamics of the process of autode-
tachment. A formula derived for the partial width of a doubly excited state represents a product of an
amplitude and phase factors. An anomalous width behavior is predicted for states near a threshold when
the orbital angular momentum of the outer electron is high. Oscillations of the phase factor, as a function
of energy, determine the functional behavior of relative widths in the region farther from threshold for a
given series of states.

PACS numbers: 32.10.–f, 31.50.+w, 32.80.Dz
Recent experiments on photodetachment from negative
ions revealed rich spectra of bound states that exist in
these atomic systems above the first detachment thresh-
olds. These states are doubly excited because the outer
electron in such a state is bound to an excited atom.
Depending on the excitation level, doubly excited states
are embedded in one or more continua and thus rapidly
decay via the process of autodetachment. These bound
states manifest themselves as resonances in photodetach-
ment cross sections. In earlier studies, strong resonances
were found in Rb2 and Cs2 below the first excited states
thresholds [1]. Later work on He2 [2], Li2 [3,4], Na2

[5], and K2 [6] revealed series of doubly excited states
bound to higher lying thresholds. Resonance structures,
associated with doubly excited states, were also observed
in the cross section of electron scattering on neutral
targets [7].

The nature of binding forces in atomic systems deter-
mines the properties of their atomic spectra, such as the
energies and widths of bound states. This binding is
fundamentally different in a nonhydrogenic negative ion
compared to atoms, positive ions, or H2. In atoms and
positive ions the valence electron moves in a long range
field of the Coulomb potential. A spectrum of bound states
in these systems represents infinite series of states converg-
ing on corresponding ionization thresholds. This conver-
gence follows the Rydberg formula near a threshold. The
negative ion H2 is a special case. Here the outer elec-
tron moves in the field of a permanent dipole associated
with the H atom in an excited state. This potential sup-
ports an infinite series of states exponentially converging
on a corresponding detachment threshold [8]. Widths of
these states exponentially decrease to zero at the thresh-
old. In the case of a nonhydrogenic negative ion consid-
ered in the present work, the outer electron moves in the
field of a dipole potential induced by the outer electron
in the parent atom. The range of this type of potential is
much shorter in comparison with the Coulomb and perma-
nent dipole potentials. As a consequence, it can support
only a finite number of states. Description of properties of
states bound by an induced dipole potential represents an
interesting fundamental problem.
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A general feature of doubly excited states in negative
ions is the weakness of their binding to a parent atomic
state. Consequently, the outer electron in such a state
moves essentially in the asymptotic region, where its
density distribution is well separated from the density
distribution of the atomic electrons. The effect of electron
interactions is, thus, reduced to the polarization of the
residual atom by the outer electron. The corresponding
asymptotic potential has the form 2a�2r4, where a is
the dipole polarizability of the parent atomic state. The
asymptotic approximation allows one to develop analytical
methods in order to describe the properties of doubly
excited states. Such a method, based on a semiclassical
consideration, was presented in Ref. [2]. A semiclassical
formula derived in this work predicts relative energies of
a series of doubly excited states converging on a given
threshold. It was shown that this convergence is of a
polynomial character. This formula was successful in
describing the energy spectra of negative ions observed
in recent experiments [2,5,6]. In the present work we
develop a semiclassical method to describe the dynamics
of autodetachment process.

Let us first consider autodetachment into a single final
state of the residual atom. Since the outer electron moves
at large distances from the core, the initial doubly excited
state can be represented by a product of wave functions
of the inner and outer electrons, c1�ra� and ci�r�, respec-
tively. The outer electron is bound by a polarization po-
tential, and the energy E of the bound state is negative
relative to the corresponding initial atomic state threshold
(see Fig. 1). In the final state, the outer electron is in the
continuum associated with the lower atomic state. The
kinetic energy of the outer electron is defined according
to the energy conservation rule: k2�2 � E1 2 E2 1 E,
where E1 and E2 are energies of the initial and final states
of the residual atom, respectively. The final state can be
represented by a product of the continuum wave function
of the outer electron cf �r� and the wave function of the
relaxed atomic electron c2�ra�. The transition from the
initial state to the final state occurs due to the Coulomb
interaction between electrons. The width of an autode-
taching state is determined by the transition probability
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FIG. 1. The polarization potential curve. E1 and E2 denote the
energy levels of the initial and final states of the residual atom.
E is the energy of the outer electron in the initial bound state.
The autodetachment transition, indicated by the arrow, occurs at
the distance r0 where the kinetic energy of the bound electron
corresponds to the kinetic energy of the outgoing electron.

per unit time, and can be expressed in terms of the matrix
element of the energy of interaction (atomic units are used
throughout):

G � 2p
Z Ç

�c2cf j
1

jr 2 raj
jc1ci�

Ç2
3 d

µ
k2

2
1 E2 2 E1 2 E

∂
d3k

�2p�3 . (1)

We describe the initial state of the outer electron jci�
semiclassically. In the classically allowed region, r , b,
the corresponding radial wave function has the form
5976
Ri�r� �
C�E�

r
p

p�r�
cos

√
2

Z r

b
p�x� dx 2

p

4

!
, (2)

where p�r� is the electron momentum in a field of the su-
perposition of a polarization potential and an orbital poten-
tial associated with the angular momentum li of the weakly
bound electron, and C�E� is the normalization coefficient
that depends on the energy of the bound state.

The effective range of the atomic potential that the outer
electron experiences in the final state is short because the
inner electron is relaxed. It will be seen below that small
distances r do not contribute to the integral of the matrix
element. Thus, as an approximation, we describe the final
state of the outer electron asymptotically. The correspond-
ing radial wave function of the lf-wave component of the
continuum state jcf� has the asymptotic form
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where dlf is the phase shift. The continuum spectrum is
normalized on the k�2p scale, as it should be in accor-
dance with Eq. (1).

The integral of the matrix element in Eq. (1) can be
separated in the radial and angular coordinates by ex-
panding the interaction term 1�jr 2 raj into a series of
Legendre polynomials. Integrating over the angular coor-
dinates and the momentum space d3k, we obtain
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where R1�ra� and R2�ra� are radial wave functions of the
jc1� and jc2� atomic states, respectively, r, and r. denote
the smaller and greater of the magnitudes of r and ra, l
is the multipole order in the expansion series of Legendre
polynomials, and Qlfl is the result of integration over the
angular coordinates.

In the following we focus our consideration on the inte-
gral over the radial coordinate r . The integrand of Eq. (4)
contains a product of two oscillating functions. Using
the trigonometric relation 2 sinb cosg � sin�b 2 g� 1

sin�b 1 g� and taking into account only the term where
the oscillation frequencies are subtracted, we obtain the
following expression for the radial integral over r:
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This integral can be analytically evaluated using the
method of steepest descents. For the sake of simplicity,
the integrand function is written only for the classically
allowed region. Its continuation in the classically for-
bidden region is an exponentially decreasing function
and, thus, the contribution to the matrix element from
the forbidden region can be neglected. The contribution
from small distances r ! 0 is also negligible. Here
the integrand function oscillates with an infinitely high
frequency and has an infinitely small amplitude. Thus, the
main contribution to the integral of Eq. (5) comes from
the saddle point r0 which is determined by the condition

p�r0� � k . (6)

This condition has a clear physical meaning. The radial
motion of the outer electron in the initial state is bound
between the turning point b and the origin. Its kinetic
energy varies from zero at the turning point to an infinitely
high value at the origin. At the point r0 defined by Eq. (6),
the kinetic energy is equal to the kinetic energy of the outer
electron in the final state. At this point the inner electron
makes the relaxation transition into the lower state, and the
outer electron continues moving as a free electron with the
corresponding kinetic energy.

Evaluating the integral of Eq. (5) by the use of the
method of steepest descents and substituting the result ob-
tained into Eq. (4), we find
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In Eq. (7) we use an approximative expression for the
saddle point r0 � �a�2�E1 2 E2��1�4, where the orbital
term is omitted. In the inner region the orbital term is small
in comparison with the polarization potential term, and it
can be neglected if the inequality �2a�E1 2 E2��1�2 ¿
li�li 1 1� is satisfied. This inequality is valid for all
experimentally measured doubly excited states. The sine
function in Eq. (7) represents a phase factor. One should
recall here that the semiclassical phase over half a period of
the bound motion is quantized and is equal to �n 1 1�2�p,
where n is an integer number. Then, the phase factor can
be represented as a cosine function of the phase difference
Df between the semiclassical phase of the bound motion
in the initial state and the asymptotic phase of the free mo-
tion in the final state, both calculated at the transition point
r0. The phase factor acquires its maximum value when the
phase difference is zero.

The coefficient C2�E� and the phase DFlf can be
analytically expressed in terms of elliptic integrals. Here
we present only a formula for C2�E� which will be
used below:
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where K�x� is a complete elliptic integral of the first kind,
the prime denotes differentiation over the function argu-
ment, and h �

p
1 1 8Ea��li�li 1 1��2.

In the following analysis we let E be a variable parame-
ter. Consider the limit of small energies jEj ø E1 2 E2,
which corresponds to upper doubly excited states lying
close to the parent atomic state. In this limit, the phase
difference Df at the transition point r0 is nearly inde-
pendent of the energy E and, therefore, the phase DFlf

differs by p for two neighbor states, as it should be ac-
cording to the semiclassical quantization rule. The phase
factor, as a function of E, makes one oscillation between
energies of two bound states, but it acquires the same
value at each of these energies. Then, for a given se-
ries of doubly excited states, the behavior of the width
of a state as a function of the energy is determined basi-
cally by the coefficient C2�E�. If the orbital momentum of
the outer electron in the initial state is zero, li � 0, from
Eqs. (7) and (9) we find that G � E3�4. In this case the
width can be infinitely small when the energy approaches
the threshold E � 0. If li fi 0, the width has a finite
value at the threshold. Moreover, the coefficient C2�E�
as a function of E has a minimum below the threshold,
as can be seen from Fig. 2 where a reduced coefficient
Cr � aC2�E���li�li 1 1��3�2 is plotted versus a reduced
energy Er � ajEj��li�li 1 1��2. Thus, if the value of the
initial orbital momentum li is large, the last state, the one
that is the closest to the threshold, does not need to be the
narrowest in a given series of doubly excited states. The
following paper reports on the observation of this anoma-
lous width behavior [6].

So far we have considered autodetachment into a single
final state of the residual atom. When more than one chan-
nel is open, the total width of a doubly excited state repre-
sents a sum over partial widths. One can see from Eq. (7),
however, that the amplitude factor of the partial width de-
creases with an increase in the energy separation between
the initial and final atomic states. In the limit of small
energies, jEj ø E1 2 E2, the amplitude factor contains a
multiplier which decreases as �E1 2 E2�27�4. As an ap-
proximation, in the following analysis of experimental data
we will consider only the partial width for autodetachment
into the closest atomic state.

Widths of series of doubly excited states were mea-
sured in alkali negative ions below the Li�6p�, Na�4d�,
and K�5f� thresholds [4–6]. In these experiments, states
of 1P symmetry were populated by photoexcitation from
the ground state of a negative ion. The closest atomic
states accessible to autodetachment are the Li�6s�, Na�5s�,
and K�7s� states, respectively. Since in all cases the
final atomic state is an s state, the angular momentum of
the outgoing electron is equal to 1. Thus, in the closest
channel approximation the sum over lf in Eq. (7) con-
tains only one term with lf � 1. The values of Jlf and dlf

are not dependent on the energy E. We do not calculate
these parameters here but use them as fit parameters. A
comparison of experimental data with theoretical predic-
tions is shown in Fig. 3, where widths are plotted versus
the absolute values of energies of bound states. It should
be understood that the energy scale represents the variable
parameter E, which acquires values of energies of states at

2.5

2.0

1.5

1.0

0.5

0.0

C
r (

a.
u.

)

1.00.80.60.40.20.0

Er (a.u.)

FIG. 2. The dependence of the reduced coefficient Cr on the
reduced energy Er in the region close to the threshold E � 0.
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FIG. 3. Widths of doubly excited states versus the absolute
values of their energies for a given series of states in (a) Li2,
(b) Na2, and (c) K2. Circles represent experimental data. Fits
of experimental data to Eqs. (7) and (9) are shown by the solid
and dotted curves, respectively.

a discrete number of points on this scale. The dotted curve
represents the energy dependence of the normalizing co-
efficient C2�E� calculated from Eq. (9). Figure 3 shows
that the experimental data can be well described by this
smooth curve in the region of small energies. However, a
strong deviation from the smooth behavior can be seen in
the region farther from threshold. The solid curve repre-
sents calculations with the phase factor taken into account
[Eq. (7)]. This curve makes one oscillation between en-
ergies of the two states, when these states are close to the
threshold. It oscillates more frequently in the region far-
5978
ther from threshold. This is because the phase difference
Df becomes strongly dependent on the energy E in this
region. Thus, the oscillations in the phase factor are im-
portant in the description of the width behavior over the
entire spectrum of a given series of states.

In conclusion, the semiclassical model shows that the
autodetachment transition occurs in the region where the
kinetic energy of the weakly bound electron corresponds
to the kinetic energy of the outgoing electron. The par-
tial width of a doubly excited state can be described by
a product of an amplitude and phase factors. The phase
factor reflects phase matching between the semiclassical
phase of the outer electron in the initial state and the phase
of the continuum wave of the outgoing electron. This fac-
tor is nearly constant at small energies below the threshold,
where the functional behavior of widths can be described
by the amplitude factor determined by the wave function
normalization coefficient. It is predicted that in the case
where the outer electron has a high angular momentum, the
widths can have an anomalous behavior near the thresh-
old. The semiclassical model describes reasonably well
the experimental data on widths in the closest channel ap-
proximation. Further investigations are required in order
to reveal the role of correlation effects in the process of
autodetachment.
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