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New Algorithm for the Ising Problem: Partition Function for Finite Lattice Graphs
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We present a new efficient method to find the Ising problem partition function for finite lattice graphs
embeddable on an arbitrary orientable surface, with integral coupling constants bounded in the absolute
value by a polynomial of the size of the lattice graph. The algorithm has been implemented for toroidal
lattices using modular arithmetic and the generalized nested dissection method. The implementation has
substantially better performance than any other as far as we know.

PACS numbers: 05.50.+q, 02.10.Eb, 05.10.–a, 75.10.Hk
Max cut and the Ising model.—There are many open
questions about the effects of disorder and frustration in
spin glasses. The simplest spin glass system used to study
these questions numerically is the Edwards-Anderson
model. Its Ising version may be described as follows: A
graph (or a lattice) is a pair G � �V , E� where V is a finite
set of vertices and E is a set of unordered pairs �u, y� , V
(edges). A coupling constant Jij is assigned to each edge
�i, j�; this factor characterizes the interaction between the
particles represented by i and j. A physical state of the
system is an assignment of spin si [ �11, 21� to each
vertex i. The Hamiltonian (or energy function) is then
defined as H�s� � 2

P
�i,j�[E Jijsisj . The distribution

of physical states over all possible energy levels is en-
capsulated in the partition function Z�b� �

P
s e2bH�s�

from which all fundamental physical quantities may
be derived.

The partition function is very close to the generating
function of cuts which is a standard concept in graph the-
ory. For a subset of edges A , E, w�A� means the sum of
the weights w�e� associated with the edges in A. A cut of
a graph G � �V , E� is a partition of its vertices into two
disjoint subsets V1, V2 , V , and the implied set of edges
between the two parts:

C�V1, V2� � ����u, y� [ E: u [ V1, y [ V2��� .

The generating function of cuts C �G, x� equals the sum of
xw�C� over all cuts C of G.

If we set the coupling constant Jij as the weight w��i, j��
of the edge �i, j�, the generating function of cuts becomes
very similar to the partition function:

Z�b� � 2
X

cutC

e2b�2w�C�2W� � 2ebWC �G, e22b� ,

where W is the sum of all the edge weights. Note that if
the edge weights are integers, the generating function of
cuts is a polynomial in x, while the partition function is a
polynomial in eb (both may have negative exponents).
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Max cut and min cut are the following combinatorial
optimization problems: Given a graph, divide its vertices
into two parts so that the number of edges between them
is as large as possible (or as small as possible). More
generally, the edges may have arbitrary weights, and we
want to minimize or maximize the sum of weights over all
the edges between the two sets of vertices.

As the division of vertices into two parts corresponds
to an assignment of positive and negative spins, and the
edges in the cut are exactly those between two vertices of
opposite spins, the max cut and min cut values correspond
to those of maximum and minimum possible energy.

The max cut problem has its own history, but what
makes it so widely studied is the enormous number of ap-
plications it finds in different fields. The general max cut
problem has defied efficient solution so far, and indeed, it
was proved to be NP hard [1], even in the case when all
the edge weights are equal to 61. In spite of that, many
attempts have been made to tackle the problem with ap-
proximation and randomized algorithms [2,3].

Polynomial time methods for toroidal square lattices
were suggested in the early 1960’s by Kasteleyn [4,5],
and Kac and Ward [6]. Kac and Ward tried to calculate
the partition function as a determinant of a 4n 3 4n ma-
trix over complex numbers and even though their original
derivation was not quite exact, it showed that such an ap-
proach was indeed possible. A similar method was used
by Kardar and Saul [7] to obtain the partition function of
a toroidal spin glass in estimated time O�n31e�, e , 1.
They asked whether an efficient method exists for general
toroidal graphs. (This paper answers the question affirma-
tively.) Another polynomial time algorithm to solve the
max cut problem in toroidal square lattices was proposed
by Barahona in [8].

There are branch-and-cut algorithms which can be ap-
plied effectively to the case of toroidal square lattices.
Barahona et al. [9] and De Simone et al. [10,11] used
integer programming techniques to solve large instances
of the max cut problem for toroidal square lattices, with
© 2000 The American Physical Society
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general weights or with weights 61 only. The method
of De Simone et al. [11], which has been so far the most
successful one to find spin glass ground states, works in
estimated time O�n3� for toroidal square lattices of n ver-
tices, for n # 50. The method is, of course, nonpolyno-
mial for general n. The Ising partition function of lattices
of higher topological genus is also studied in [12] and [13].

However, there has been no deterministic algorithm
which would produce an exact result in polynomial time
for any toroidal graph, for example. Because of a recent
result proved by two of the authors [14,15], though, it
has become possible to solve max cut in polynomial time
for any graph of genus bounded by a constant, with edge
weights bounded by a polynomial of the size of the graph.
The method produces actually the generating function of
cuts which is equivalent to the partition function. This can
be of tremendous interest for anyone studying a particular
Ising model.

The aim of this paper is to describe the features of the
algorithm and its implementation with emphasis on the
toroidal spin glass problem. The algorithm is parallel in
nature and it is based on modular arithmetic calculations.
It may be particularly useful for calculation of the energy
and degeneracy of the ground state and the first excited
state. It makes it possible, by using massive parallelization,
to determine these quantities exactly for lattices of a size
up to 100 3 100. The time complexity of our algorithm
in comparison with other methods is discussed in the last
section [16].

The theory behind the algorithm.—A graph G has genus
g if it can be drawn on an orientable surface of genus g
(a sphere with g “handles” attached to it) without crossing
the edges. For example, planar graphs have genus 0 and
toroidal graphs have genus 1. In the following, we will
consider only graphs of bounded genus, especially 0 or 1.

An Eulerian subgraph of a graph G � �V , E� is a set
of edges U , E such that each vertex is incident with an
even number of edges from U. The generating function
of Eulerian subgraphs E �G, x� equals the sum of xw�U�

over all Eulerian subgraphs U of G. There is a relation
between the partition function and the generating function
of Eulerian subgraphs, which was discovered by van der
Waerden [17]:

Z�b� � 2n
Y

�i,j�[E

cosh�bJij�E ���G, tanh�bJij���� .

In other words, the partition function can be expressed as
the generating function of Eulerian subgraphs of the same
graph, with modified edge weights w0

ij � tanh�bJij�.
A perfect matching of a graph G � �V , E� is a set of

edges P , E such that each vertex is incident with ex-
actly one edge from P. The generating function of perfect
matchings P �G, x� equals the sum of xw�P� over all perfect
matchings P of G.

The generating function of Eulerian subgraphs of a
graph G can be transformed into the generating function
of perfect matchings of a modified graph Gs. We use
Fisher’s construction described in [18]. It is local in the
sense that it modifies each vertex only in a way dependent
on its degree and it preserves the genus of the graph.
Hence we need to describe an efficient way to compute
the generating function of perfect matchings of a graph of
bounded genus.

Let G � �V , E� be a graph on 2n vertices, �w�e�, e [
E� the weights assigned to the edges, and D an orientation
(a fixed ordering of the two vertices of each edge). Let
A�D� denote the antisymmetric adjacency matrix where
aij � xw�i,j�, if �i, j� is a directed edge, aij � 2xw� j,i�,
if �j, i� is a directed edge, and aij � 0 otherwise.

The Pfaffian of this matrix is defined as

Pf���A�D���� �
X

P

sgn�P�ai1j1ai2j2 . . . ainjn ,

where the sum is taken over all partitions of the index set
�1, 2, . . . , 2n� into pairs i1 , j1, . . . , in , jn and sgn�P� is
the sign of the permutation �i1, j1, i2, j2, . . . , in, jn�. The
Pfaffian is similar to the determinant of a matrix and it can
be calculated efficiently.

It can be observed that the nonzero terms contributing
to the Pfaffian are exactly those corresponding to perfect
matchings of G (partitionings of the set of vertices into
pairs where there is an edge between each pair). How-
ever, each of them comes with a positive or negative sign,
depending on the orientation D. What we would like to
find is a special orientation that produces positive signs
for all perfect matchings. Then the Pfaffian would be ex-
actly equal to the generating function of perfect matchings.
Such a special orientation (called Pfaffian) exists indeed
for planar graphs, which was proved by Kasteleyn [4].

For general graphs we cannot rely on the Pfaffian
orientation, as it may not always exist. However, the
situation is solved by the Galluccio-Loebl theorem [14]
which states that a graph G of genus g has 4g relevant
orientations such that a suitable linear combination of the
corresponding Pfaffians equals the generating function of
perfect matchings of G. To calculate the Pfaffians we
use a method which was developed by George [19] and
later refined by Lipton, Rose, and Tarjan [20]. Their
approach, though intended for Gaussian elimination, can
be geared to Pfaffian elimination as well. If G is a graph
of bounded genus on n vertices, Pfaffian elimination of
the corresponding adjacency matrix can be performed in
O�n logn� space and O�n3�2� time.

Here it should be noted that the units of the time com-
plexity are actually the basic operations with elements of
the matrices. However, these elements are polynomials
in one variable. If we wanted to perform the operations
symbolically, we could hardly hope to carry them out in
constant time. Also, we would have to face the problem
of numerical stability, and the memory requirements for
symbolic manipulation would be enormous. Instead, we
decided to use modular arithmetic.
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For simplicity, we suppose that the edge weights (and
hence the exponents in the polynomial) are integers. We
perform the elimination numerically, in a finite field
GF�p� where p is a prime number. This means all
operations are performed modulo p and we can multiply
and divide without loss of precision. The operations can
be performed in constant time and the elements take up
constant space.

On the other hand, the result of this computation is
only the value of the generating function modulo some
prime. In order to reconstruct the whole polynomial,
we need to calculate the values at sufficiently many
points, obtain the polynomial by interpolation in the finite
field, and then (if necessary) repeat the computation in
several finite fields and compose the partial results to get
the complete polynomial.

Another advantage of this approach is that the algorithm
is parallel in nature— the computation is broken up into
many independent parts which can be processed in parallel.
Or we can use only the coefficients obtained in one finite
field as partial results; this can be useful if we only want
to find the value of the ground state energy, i.e., the first
nonzero coefficient in the polynomial.

As a consequence, the partition function can be com-
puted efficiently and precisely for any graph of bounded
genus, with coupling constants bounded in the absolute
value by a polynomial of the size of the graph.

Algorithm overview.—Let us summarize the algorithm
to calculate the partition function for a given toroidal graph
G � �V , E�:

(1) Find prime numbers p1, p2, . . . , pk , 216 so thatQk
i�1 pi . 2jV j. For each of them, repeat the remain-

ing steps of the algorithm, performing all operations in
GF�pi�.

(2) Choose m 1 1 distinct elements x0, . . . , xm [
GF�pi�, where m is the maximum possible degree of the
polynomial. (Avoid xj � 0 because the elements must be
invertible.) For each of them, repeat the following step.

(3) Construct the matrices encoding the relevant orien-
tations of the modified graph Gs, with hyperbolic func-
tions tanh�bJij� substituted for edge weights. For every
occurrence of b substitute eb � xj and calculate the four
Pfaffians. From these values, calculate the value of Z�b�.

(4) Obtain the coefficients of Z�b� (modulo pi) by in-
terpolation in GF�pi�; we use the fact that if we have the
values of our polynomial modulo some prime p, we can
also extract its coefficients modulo p.

(5) Apply the Chinese remainder theorem and compose
the results for each coefficient from all the finite fields, to
obtain the complete partition function.

The number of finite fields is O�n�, assuming there is a
sufficient number of primes in the range where our hard-
ware is able to perform modular arithmetic in constant
time. Because of this constraint, the algorithm is actually
unable to work properly for an arbitrarily large input, and
any complexity analysis in the sense of asymptotic behav-
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ior is meaningless. On the other hand, the limit on the size
of lattices we are able to process is well beyond our prac-
tical possibilities. The product of all primes below 216 is
approximately 2216

, which means we can process lattices
with at most 216 vertices. If this should prove insufficient,
we could still move to 32-bit arithmetic and the limit of 232

vertices which would be enough to keep all our computing
resources busy for more than the lifetime of our Universe.

If the edge weights are bounded by a constant, the num-
ber of evaluations in each of the fields is O�n�. ( In general,
the number of values is polynomial if the edge weights are
bounded by a polynomial of the size of the lattice.) A
single evaluation of the polynomial takes O�n3�2�, so the
computation in each finite field takes O�n5�2� time. The
total time complexity of step 3 (under the restrictions men-
tioned above) is therefore O�n7�2�. The interpolation in
step 4 and the final composition in step 5 take O�n3� time
in total, so they are faster than the Pfaffian evaluation in
step 3.

Steps 2, 3, and 4 can be parallelized easily. The com-
putation in each of the finite fields can be performed
separately, and the communication is trivial: in step 5, we
only have to send the results modulo each of the primes,
i.e., data of size O�n2�. With this degree of paralleliza-
tion [O�n� processors are needed], steps 2, 3, and 4 take
O�n5�2� time, whereas step 5 takes O�n3�. To remove
this obstacle, we could parallelize it as well; every proces-
sor would produce one of the O�n� coefficients in O�n2�
time. Then the total (parallel) time complexity would be
O�n5�2�.

As mentioned above, the computation in each of the fi-
nite fields takes O�n5�2� time. The product of this part
of the algorithm is the partition function with coefficients
modulo pi . The information we obtain here is significantly
reduced, but we can still use it for detection of the ground
state energy (which corresponds to the first nonzero coef-
ficient in the partition function).

If the remainder of a coefficient modulo a prime num-
ber is nonzero, then the coefficient is certainly nonzero.
On the other hand, if the remainder is zero, the original
coefficient is zero with high probability. By allowing our-
selves to choose from a wide enough range of primes, we
can make the chance of error arbitrarily small. We can also
reduce the probability of error by performing independent
computations in several finite fields.

The time complexity O�n5�2� in one finite field com-
pares favorably with the estimated complexity O�n3� of
the most successful method to calculate the ground state
energy which uses integer programming techniques [11].
As regards the complete partition function, the complexity
of our algorithm is comparable with the estimated com-
plexity of the implementation of Kardar and Saul [7].
Apart from our method, this is the only method providing
the exact spin glass partition function for toroidal square
lattices that we know about. However, the advantages
of our algorithm are its self-contained structure and easy
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parallelization. Moreover, as mentioned above, computa-
tion in one or a few finite fields yields the values of some
coefficients with high probability.

In order to test the software we carried out a number of
experiments on square toroidal lattices with random cou-
pling constants 61. For illustration, the running times (se-
quentially on a PC with an Athlon/500 MHz CPU) are as
follows: The complete partition function for a 10 3 10
lattice takes 15 sec to compute, a 20 3 20 lattice 25 min,
a 30 3 30 lattice 8 h, and a 50 3 50 lattice 14 days. The
computation in one finite field (which is practically suf-
ficient for ground state detection) takes only 2 h for the
50 3 50 lattice. In comparison, Kardar and Saul [7] re-
port a computation time of 110 sec for a 10 3 10 lattice,
on an Indigo 4000 workstation. The values for larger lat-
tices are not provided in their paper. We also computed
the regular Ising energy histograms for a 32 3 32 lattice
(all coupling constants equal to 11). The result matches
that of Beale [21].
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