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Distillation of Greenberger-Horne-Zeilinger States by Selective Information Manipulation

Oliver Cohen1,2 and Todd A. Brun1

1Physics Department, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
2Physics Department, Birkbeck College, University of London, Malet Street, London WC1E 7HX, England

(Received 24 January 2000)

Methods for distilling Greenberger-Horne-Zeilinger (GHZ) states from arbitrary entangled tripartite
pure states are described. These techniques work for virtually any input state. Each technique has two
stages which we call primary and secondary distillations. Primary distillation produces a GHZ state
with some probability, so that when applied to an ensemble of systems a certain percentage is discarded.
Secondary distillation produces further GHZs from the discarded systems. These protocols are developed
with the help of an approach to quantum information theory based on absolutely selective information,
which has other potential applications.

PACS numbers: 03.67.–a, 03.65.Bz
In the rapidly developing field of quantum information,
it is possible to identify two main lines of investigation. On
the one hand, it addresses basic questions on the fundamen-
tal nature of information, how it is embodied in quantum
systems, how it can be quantified, and the extent to which
physical properties can be reduced to informational ones
[1]. On the other hand, it addresses specific operational
issues, for example, how quantum information can be ma-
nipulated for applications such as quantum computation
and teleportation [2].

In this Letter we try to bring together these two strands
by proposing a new approach to the analysis of quantum
information at a fundamental level, which leads directly to
an operational technique for distilling maximally entangled
tripartite [Greenberger-Horne-Zeilinger (GHZ)] states [3],
using local operations and classical communication. The
three qubits of the system are assumed to be physically
separated and held by Alice, Bob, and Cara, respectively.
[Throughout this Letter we use the term “maximally en-
tangled” to refer to N-partite states that are N orthogonal;
i.e., if the subsystems are two dimensional such a state
would be

p
1�2 �j0000 . . .� 2 j1111 . . .��.]

Central to our approach is the notion of absolutely se-
lective information, which has a straightforward interpre-
tation in terms of classical information but can be seen as a
basic distinguishing feature between quantum systems and
their classical counterparts. We apply our approach to the
specific problem of distilling GHZ states from arbitrary
entangled tripartite pure states. We show that it is possible
to distill, with a certain probability, a GHZ state from vir-
tually any entangled tripartite pure state while retaining all
three subsystems of the input state. As far as we know this
is the first protocol of this type to be suggested. Our initial
yield of GHZ states is then supplemented by an additional
yield which involves sacrificing some subsystems. In this
Letter we outline our approach and summarize our results.
A more detailed exposition of the underlying analysis will
be presented elsewhere [4].

The distinction between “selective” and “structural” in-
formation was addressed by Mackay [5] in the early days
08 0031-9007�00�84(25)�5908(4)$15.00
of classical information theory. Whereas structural infor-
mation measures are based on an analysis of the form of
possible events, selective information refers to new infor-
mation gained from the occurrence of a specific event. For
example, a signal might transmit a bit as one of two differ-
ent wave forms; the selective information would be one bit,
while the structural information, sufficient to describe all
possible wave-form measurements, would be considerably
more. Absolutely selective information signifies data that
are irreducibly unpredictable, and hence genuinely new, in
the sense that their unpredictability cannot be explained
by the observer’s ignorance. This type of information
can arise only in a theory that is fundamentally stochastic,
hence it is commonplace in quantum physics, but absent
from classical physics. For a quantum state, the minimum
local absolutely selective information (the minimum infor-
mation generated by measuring one of the subsystems with
a free choice of measurement basis) is exactly the same as
the local entropy.

When considered as a quantitative measure, selective in-
formation is closely related to fundamental measures in
quantum information theory. For example, the standard
measure of entanglement for bipartite pure states [6] is nu-
merically equal to the minimum local absolutely selective
information. In a similar way, minimizing the absolutely
selective information can be used to develop measures of
nonorthogonality for quantum states [7]. In this Letter we
show that absolutely selective information can be manipu-
lated by an appropriate measurement procedure and apply
this to an operational problem.

The problem we address is to transform a state jc123�,

jc123� �aj000� 1 bj001� 1 cj010� 1 dj011�

1 ej100� 1 fj101� 1 gj110� 1 hj111� , (1)

into the state jcGHZ� �
p

1�2 �j000� 2 j111��, with some
probability. Let us first consider the minimum absolutely
selective information Ai associated with each of the three
qubits in jc123�:
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Ai � 2�pi log2pi 1 �1 2 pi� log2�1 2 pi��

i � 1, 2, 3 , (2)

where pi and 1 2 pi are the eigenvalues of the reduced
density operator ri that describes system i when the other
two subsystems are traced out,

ri � Trjk�jcijk� �cijkj� . (3)

(Without loss of generality we adopt the convention that
pi $ 1�2.)

It can be shown [8] that the maximal value of
P3

i�1 Ai

for any tripartite pure state occurs uniquely for the GHZ
state (or any local unitary transform of it), for which each
of the pi’s is equal to 1�2 and

P3
i�1 Ai � 3. Our distilla-

tion procedure makes use of this fact by decreasing each of
the pi’s in turn (with some probability), applying the pro-
cedure repeatedly until all of the pi’s are within some tol-
erance of 1�2, at which point a GHZ state will necessarily
have been distilled (up to a local unitary transformation).

The technique for decreasing the pi’s is similar to Bern-
stein and Bennett’s Procrustean method [6]. We perform
a positive operator valued (POV) measurement consecu-
tively on each subsystem. To see how this works, let us
carry out the procedure on subsystem 1. If we consider
subsystems 2 and 3 as a single composite system, we can
write the tripartite state as a Schmidt decomposition with
respect to subsystem 1 and the composite 2-3 system:

jc123� �
p

p1 j1�1jf
1�23 1

p
1 2 p1 j2�1jf

2�23 . (4)

The minimum absolutely selective information for subsys-
tem 1 is then given by

A1 � 2�p1 log2p1 1 �1 2 p1� log2�1 2 p1�� . (5)

By carrying out an appropriate POV measurement on this
subsystem, we can with some probability bring A1 to its
maximal value of 1. We introduce an ancilla qubit “a,”
which interacts unitarily with subsystem 1:

j1�1j0�a ! aj1�1j0�a 1
p

1 2 a2 j1�1j1�a ,

j2�1j0�a ! j2�1j0�a ,

j1�1j1�a !
p

1 2 a2 j1�1j0�a 2 aj1�1j1�a ,

j2�1j1�a ! j2�1j1�a .

(6)

We then measure the state of the ancilla. If we set a �p
�1 2 p1��p1 and the starting state of the ancilla to be

j0�a, we will with probability 2�1 2 p1� find the ancilla
in state j0�a, which projects the system into the statep

1�2 �j1�1jf
1�23 1 j2�1jf

2�23�, for which A1 � 1.
With probability 2p1 2 1 we will measure state j1�a, in
which case the procedure fails.

In Bernstein and Bennett’s Procrustean technique, this
one step followed by a local unitary transformation suffices
to distill EPR pairs from arbitrary entangled bipartite states
[6]. In the tripartite case, we then repeat the procedure on
subsystems 2 and 3, which projects the system into states
for which p2 � 1�2, A2 � 1 and p3 � 1�2, A3 � 1, re-
spectively. However, if we simply carry out a single POV
measurement of this type on each of the three subsystems
in turn, the resulting tripartite state will not in general be
a GHZ state. Each step of the process is nonunitary, since
the tripartite system can be discarded at each stage if the
wrong result for the POV measurement is obtained. While
the Ai are conserved by unitary operations on the local sub-
systems, they are not conserved in general for nonunitary
operations. Hence, when we carry out a POV measure-
ment on bit i to project the system into a state for which
pi � 1�2 and Ai � 1, this will disrupt the values of p and
A for the other two qubits.

Nevertheless, it transpires that, for most tripartite states,
repeated application of this type of POV measurement will
steadily move the input state towards a GHZ state until it
gets arbitrarily close to it. (Exceptions will be identified
later.) There are a number of plausible ways to measure
“closeness” to a GHZ state. Three such measures are

Dp �
3X

i�1

pi 2 3�2 , (7a)

DS � 3 2

3X

i�1

Ai , (7b)

D2 � 3�4 2

3X

i�1

pi�1 2 pi� . (7c)

We introduce this last quantity because it is more tractable
analytically than Dp and DS , being a simple polynomial
function of the coefficients of jc�123.

We simulated this process on a large sample of randomly
chosen initial states, treating the real and imaginary parts
of the coefficients of (1) as random variables uniformly
distributed on the surface of a sixteen-dimensional hyper-
sphere. Numerical analysis of this sample shows that, for a
large fraction of these states, Dp approaches zero to an ac-
curacy of 1023 after just two complete iterations (i.e., two
POV measurements performed on each of the three sub-
systems), while virtually all do so within four iterations.
Interestingly, we find that, in every case examined (aside
from the exceptions given below), Dp decreases monotoni-
cally toward zero with each step of the procedure, whereas
DS and D2 can fluctuate, though of course their general
trend is downward.

The results presented so far are supported by numerical
analysis only. However, there is a closely related procedure
for which we have derived analytical proof of efficacy for
virtually any input state [4]. In this second method, in-
stead of reducing each probability pi to 1�2 in turn us-
ing POV measurements, the probabilities are reduced by a
small amount e, so that with each step the state changes
infinitesimally in the limit e ! 0. The proof follows fairly
straightforwardly by deriving the changes in the state co-
efficients from the procedure, then using these to derive
the change in D2. By changing to the Schmidt basis for all
three bits—a very useful standard form—one can, with
some effort, show that pi�1 2 pi� can never decrease for
5909
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i � 1, 2, 3, and will only remain unchanged for certain
very special initial states detailed below. This monotonic-
ity implies monotonicity for D2, Dp , and DS , so that all of
these quantities diminish steadily as the state approaches
a GHZ state. This infinitesimal method would be quite
challenging experimentally, but it is analytically interest-
ing due to its relative tractability.

The protocols described thus far correspond to what we
call “primary” distillation. They will give a specific yield
(i.e., surviving percentage) of GHZ states if a collection
of systems is supplied in a given input state. This yield
can be straightforwardly calculated for the large-step pro-
cedure; after each POV measurement on the ith subsystem
a proportion 2�1 2 pi� of the systems is retained. The
yield of GHZ states for the primary distillation process
averaged approximately 9.2% for the evenly distributed
sample of input states we analyzed, but this will clearly
depend strongly on the initial distribution.

Average yields for the infinitesimal procedure were
9.8%. The chance of the procedure failing on any given
step is quite small, but over many steps the number of
failures mounts. The difference between the infinitesimal
and big-step procedure is interesting when contrasted with
the bipartite Procrustean technique. In the bipartite case,
there is no advantage to using small steps over a single
large step; the yields are the same in both cases. Clearly in
the more elaborate tripartite procedure there is a difference.

This yield can be greatly enhanced by a process of sec-
ondary distillation, which makes use of those systems dis-
carded during primary distillation. When we carry out the
initial POV measurement on subsystem 1 for the input
state jc�123 given by Eq. (1), with probability 2p1 2 1,
we fail to obtain the desired result. However, this failure
will leave the discarded system in the state j1�1jf

1�23,
where jf1�23 is in general an entangled bipartite state of
subsystems 2 and 3. Similarly, failures at later steps of
the primary distillation process can yield entangled bipar-
tite states of subsystems 1 and 2 and of subsystems 1 and
3. Thus, when the primary distillation procedure has been
completed on a collection of systems in a given input state,
we will have an additional residue of entangled bipartite
states of subsystems 1 and 2, 1 and 3, and 2 and 3. These
entangled pairs can be distilled to EPR pairs by standard
techniques [6], and the resulting EPR pairs can be used
to prepare further GHZ triplets. (For example, if Alice
shares one EPR pair with Bob and another with Cara, she
can distribute a GHZ state by preparing it locally and then
teleporting the states of two of the subsystems to Bob and
Cara with the help of the two EPR pairs.) This is quite
similar to the method of [9].

If, when primary distillation is completed, we produce
N23 EPR pairs of subsystems 2 and 3, N31 EPR pairs of
subsystems 3 and 1, and N12 EPR pairs of subsystems 1
and 2 from the discarded systems, we will be able to dis-
till further �N23 1 N31 1 N12��2 GHZ triplets (in the case
where none of the Ns is greater than the sum of the other
5910
two) or �Njk 1 Nki� GHZ triplets (if Nij . Njk 1 Nki).
Numerical analysis indicates that the average yield for sec-
ondary distillation of GHZ states, for the random sample
considered, is approximately 27.5% for the large-step pro-
cedure, giving a total yield of about 36.7%. The infinitesi-
mal technique does even better, giving a secondary yield
of 29.4% for a total yield of 39.2%.

Since the bulk of this yield comes from the production
of EPR pairs, one might reasonably ask how these methods
compare to simply producing EPR pairs (with no primary
distillation) and then using these pairs to produce GHZ
triplets directly [9]. EPR pairs are produced by measuring
one of the subsystems in such a way as to maximize the
pairwise entanglement between the other two bits and then
distilling perfect EPR pairs from the resulting states. For
the same random sample of states, this technique produces
an average yield of 31.5%, lower than either of the other
two techniques and not much higher than the secondary
yield alone. This does not, of course, prove that it is worse
for every initial state. However, the closer the initial state is
to a GHZ [using any of our distance measures (7a)–(7c)],
the better the distillation procedures presented in this paper
perform, while producing GHZs from EPR pairs has a
maximum yield of 50%.

For some special cases these protocols will not work as
described. If the original input state is not three-party
entangled, the protocol will fail completely; that is, if the
original state can be written as jx�ijz �jk , no three-party en-
tanglement will be distillable by either primary or second-
ary distillation. There is another set of states for which
primary distillation fails, but which can still produce GHZ
states by secondary distillation. This set consists of tripar-
tite input states with just three components, where each
component is biorthogonal (but not triorthogonal) to the
other two, and local unitary transforms of such states. For
example, the state jc�tr � bj001� 1 cj010� 1 ej100� is
of this type. We call such states “triple” states; all have
Dp $ 1�2, though a substantial subset has Dp � 1�2
exactly. Both forms of the primary distillation process take
triple states to triple states, so that the GHZ state will never
be produced. The large-step procedure causes all triple
states to converge to the state jcGM� �

p
1�2 j001� 1p

�
p

5 2 1��4 j010� 1
p

�3 2
p

5��4 j100�, at which point
any further steps will simply result in a cyclic shuffling of
the component amplitudes. We call this attractor state the
“golden mean” state because of the appearance of the
golden mean in the amplitudes. The infinitesimal procedure
leaves all triple states with Dp � 1�2 unchanged. This pro-
cedure can also cause certain other states with Dp . 1�2
to converge to triple states rather than GHZ states, though
most do not. The large-step procedure may also take some
states to triple states. Triple states also play an interesting
role in the work of Coffman, Kundu, and Wootters [10],
where they minimize the residual three-tangle, and of Car-
teret and Sudbery [11], who showed that they behave
atypically under local unitary transformations.
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Although triple states do not yield any GHZ states by
primary distillation, they can of course produce them by
secondary distillation. Moreover, it is possible to move
off of a triple state (with some probability) by performing
a POV measurement in a basis other than the Schmidt
basis. That is, instead of using the basis j1�1 and j2�1
in the transformation (6), one uses a different basis, such
as �j1�1 6 j2�1��

p
2. Setting a to a reasonable value (such

as a �
p

1�2) will then take triple states to nontriple states.
However, the new state produced by this procedure will in
general reconverge to a triple state.

We have shown that manipulation of absolutely selective
information can be used to distill maximally entangled tri-
partite states from arbitrary tripartite entangled pure states.
This method will not work for systems with four or more
subsystems, since, in these, pi � 1�2 does not uniquely
determine the maximally entangled state. It may be that
related techniques might succeed, however, if it is possible
to manipulate other locally unitarily invariant parameters
by local POVs and classical communication.

Even in the three-qubit case, however, the procedure we
have described is surely not optimal. We can see this by
considering states of the form jc� � aj000� 1 bj111� with
a and b real and a2 1 b2 � 1. These generalized GHZ
states give a yield of 2�1 2 a2� (assuming a2 . b2) by our
technique, both for large and infinitesimal step sizes. The
asymptotic algorithms for distilling bipartite entanglement
also work for generalized GHZs in the tripartite case, giv-
ing a yield of 2�a2 loga2 1 b2 logb2� $ 2�1 2 a2�. For
this case, therefore, our algorithm is clearly suboptimal.

The optimal distillation technique for a general three-
qubit state is not known [12], but would almost certainly
make use of joint manipulations on many copies of the
input state. Nor is an asymptotically reversible distilla-
tion technique known for GHZ states [13]. It would be
interesting to compare the yields of these two hypotheti-
cal techniques. In the bipartite case they are the same, but
this need not be so in the tripartite case. Indeed, if the
reversible GHZ distillation technique produced any extra
two-party entanglement, one would generally expect to be
able to produce further GHZ states by an irreversible sec-
ondary distillation stage. This suggests that the algorithm
giving the optimal yield of GHZs will probably not be re-
versible. It would also be interesting to compare our yield
of GHZ states to some standard measure of tripartite entan-
glement. Lacking such a measure, however, the best that
can be done is to compare different distillation techniques
to each other.

There may be a number of other problems in quantum
information theory which are amenable to an approach fo-
cusing on the absolutely selective information content of
quantum systems. For example, work in progress suggests
than such an approach can be useful in the analysis of
nonorthogonality. Since selective information is a clas-
sical concept, this approach also provides a valuable link
between classical and quantum information.
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