
VOLUME 84, NUMBER 25 P H Y S I C A L R E V I E W L E T T E R S 19 JUNE 2000

5896
Spin Correlations in Nonlinear Optical Response: Light-Induced Kondo Effect
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We study the role of spin correlations in nonlinear absorption due to transitions from a deep impurity
level to states above a Fermi sea. We demonstrate that the Hubbard repulsion between two electrons
at the impurity leads to a logarithmic divergence in x �3� at the absorption threshold. This divergence is
a manifestation of the Kondo physics in the nonlinear optical response of Fermi sea systems. We also
show that, for off-resonant pump excitation, the pump-probe spectrum exhibits a narrow peak below the
linear absorption onset. Remarkably, the light-induced Kondo temperature, which governs the shape of
the Kondo-absorption spectrum, can be tuned by varying the intensity and frequency of the pump.

PACS numbers: 78.47.+p, 71.10.Ca, 71.45.–d, 78.20.Bh
There are two prominent many-body effects in the lin-
ear absorption spectrum due to optical transitions from a
localized impurity level to the continuum of states above
a Fermi sea (FS). First is the Mahan singularity due to
the attractive interaction between the FS and the localized
hole. Second is the Anderson orthogonality catastrophe
due to the readjustment of the FS density profile during
the optical transition. Both effects have long become text-
book material [1]. The role of many-body correlations in
the nonlinear optical response has been investigated only
during the past decade [2]. Recently, there has been a
growing interest in the coherent ultrafast dynamics of the
FS systems at low temperatures [3–8].

In this paper, we suggest a new many-body effect in the
nonlinear absorption of a FS system with a deep impurity
level. This effect originates from the spin correlations be-
tween the photoexcited and the FS electrons. We note that
a number of different intermediate processes contribute to
the third-order optical susceptibility x�3� [9]. It is crucial
that, in the system under study, some of the intermediate
states involve a doubly occupied impurity level. For ex-
ample, the optical field can first cause a transition of a FS
electron to the singly occupied impurity level, which thus
becomes doubly occupied, and then excite both electrons
from the impurity level to the conduction band. This is
illustrated in Fig. 1(a). Importantly, while on the impurity,
the two electrons experience a Hubbard repulsion. Our
main observation is that such a repulsion gives rise to an
anomaly in x �3�. The origin of this anomaly is intimately
related to the Kondo effect.

To be specific, we restrict ourselves to pump-probe spec-
troscopy, where a strong pump and a weak probe optical
field are applied to the system, and the optical polariza-
tion along the probe direction is measured. We only con-
sider near-threshold absorption at zero temperature and
assume that the pump frequency is tuned below the onset of
optical transitions from the impurity level so that dephas-
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ing processes due to electron-electron and electron-phonon
interactions are suppressed. Under such excitation con-
ditions, the following Hamiltonian describes the system:
Htot � H 1 H1�t� 1 H2�t�, where

H �
X
ks

´kc
y
kscks 1 ´d

X
s

dy
sds 1

U
2

X
sfis0

n̂s n̂s0 ,

(1)

is the Hamiltonian in the absence of optical fields. Here
c
y
ks and dy

s are conduction and localized electron creation
operators, respectively �n̂s � dy

sds�, ´k and ´d are the
corresponding energies, and U is the Hubbard interaction
(all energies are measured from the Fermi level). The
coupling to the optical fields is described by the Hamilton-
ian Hi�t� � 2Mi�t�T̂y 1 H.c., where T̂y �

P
ks c

y
ksds

(i � 1, 2 denotes the probe and pump, respectively) with
Mi�t� � eiki ?r2ivi tmEi�t�. Here Ei�t�, ki , and vi are

FIG. 1. Intermediate processes contributing to x �3�. (a) Inter-
mediate state with doubly occupied impurity. (b) Large U limit:
two transition channels are available from states below the FS
to the empty impurity, but only one channel from the singly
occupied impurity to states above the FS.
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the pump-probe electric field amplitude, direction, and
central frequency, respectively, and m is the dipole ma-
trix element. The pump-probe polarization is obtained by
expanding the optical polarization, m �T̂ �, to the first or-
der in H1 and keeping the terms propagating in the probe
direction [9]:

P�t� � im
Z t

2`
dt0 M1�t0� ��F�t�jT̂K�t, t0�T̂yjF�t0��

2 �F�t0�jT̂yK �t0, t�T̂ jF�t��� ,
(2)

where K�t, t0� is the evolution operator for the Hamilton-
ian H 1 H2�t� and the state jF�t�� satisfies the Schrö-
dinger equation i≠tjF�t�� � �H 1 H2�t�� jF�t��.

The third-order polarization is obtained by expanding
K�t, t0� and jF�t�� up to the second order in H2. Be-
low we consider sufficiently large values of U so that,
in the absence of optical fields, the ground state of H,
jV0�, represents a singly occupied impurity and full FS.
For large U, the doubly occupied impurity states are en-
ergetically unfavorable and can be excluded from the ex-
pansion of the polarization (2) with respect to H2. The
third-order pump-probe polarization then takes the form
P�3��t� � eik1?r2iv1t P̃�3� with

P̃�3� � im4
Z t

2`
dt0 E1�t0�eiv1�t2t0�

3 �Q1�t, t0� 1 Q�
1�t0, t� 1 Q2�t, t0� 1 Q3�t, t0�� ,

(3)

where

Q1�t, t0� � 2
Z t0

2`
dt1

Z t1

2`
dt2 f�t1, t2�F�t, t0, t1, t2� ,

Q2�t, t0� � 2
Z t

t0
dt2

t2Z
t0

dt1 f�t1, t2�F�t, t2, t1, t0� , (4)

Q3�t, t0� � 2
Z t0

2`
dt1

Z t

2`
dt2 f�t1, t2�F�t1, t0, t, t2� .

Here we denoted f�t1, t2� � E2�t1�E2�t2�eiv2�t12t2�, and
F�t, t0, t1, t2� � �V0jT̂e2iH�t2t0�T̂ye2iH�t02t1�T̂e2iH�t12t2�T̂yjV0�

�
X

pqk0klss0s

Alss0s
pqk0k e2i�´p2´d� �t2t0�2i�´k2´k0 � �t02t1�2i�´k2´d� �t12t2�, (5)
Alss0s
pqk0k � �V0jd

y
lcplcy

qsdsd
y
s0ck0s0c

y
ksdsjV0�

� dlsdss0ns�1 2 np�
3 �dpkdqk0nq 1 dss0dpqdkk0�1 2 nk�� ,

(6)
with ns � �V0jdy
sdsjV0� and nk � �V0jc

y
kscks jV0�

(the impurity occupation number here is nd �
P

s ns �
1). For monochromatic optical fields, Ei�t� � Ei , the
time integrals can be explicitly evaluated. After a lengthy
but straightforward calculation, the third-order polariza-
tion (3) takes the form P̃�3� � P̃

�3�
0 1 P̃

�3�
K with
P̃
�3�
0 � m4E1E

2
2

X
pq

�1 2 np�
´p 2 ´d 2 v1

"
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�´p 2 ´q� �´p 2 Ed�
2

1
�´p 2 ´d 2 v1� �´q 2 Ed�

#
, (7)
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�3�
K � �N 2 1�m4E1E

2
2

X
pq

�1 2 np�nq

´p 2 ´d 2 v1

"
2

�´p 2 ´q� �´p 2 Ed�
2

1
�´p 2 ´d 2 v1� �´q 2 Ed�

#
, (8)
where N is the impurity level degeneracy. Here we intro-
duced the effective impurity level Ed � ´d 1 v2. The
first term, P̃

�3�
0 , is the usual third-order polarization for

spinless �N � 1� electrons [9]. The second term, P̃
�3�
K ,

originates from the suppression, due to the Hubbard re-
pulsion U, of the contributions from doubly occupied im-
purity states. As indicated by the prefactor �N 2 1�, it
comes from the additional intermediate states that are ab-
sent in the spinless case [see Fig. 1(b)].

Consider the first term in Eq. (8). The restriction of
the sum over q to states below the Fermi level results
in a logarithmic divergence in the absorption coefficient,
a ~ ImP̃, at the absorption threshold, v1 � 2´d:
ImP̃
�3�
K � �N 2 1�p0u�v1 1 ´d�

2D

pdv
ln

Ç
D

v1 1 ´d

Ç
,

(9)

where p0 � pE1m2g, dv � v1 2 v2 is the pump-
probe detuning, and D � pgm2E 2

2 is the energy width
characterizing the pump intensity, and D and g are the
bandwidth and the density of states (per spin) at the Fermi
level, respectively. Recalling that the linear absorption is
determined by ImP̃�1� � p0u�v1 1 ´d�, we see that it
differs from Eq. (9) by a factor 2D

pdv ln j D
v11´d

j (setting

for simplicity N � 2). In other words, ImP̃�1� and ImP̃
�3�
K

become comparable when
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v1 1 ´d � dv 1 Ed 	 D exp

µ
2

pdv

2D

∂
. (10)

We see that the perturbative expansion of the nonlinear
optical polarization in terms of the optical fields breaks
down even for weak pump intensities (i.e., small D). The
above condition of its validity depends critically on the
detuning of the pump frequency from the Fermi level. For
off-resonant pump, such that the effective impurity level
lies below the Fermi level, jEdj � j´dj 2 v2 ¿ D, the
relation (10) can be written as dv 1 Ed 	 TK with

TK � DepEd�2D � D exp

∑
2
j´d j 2 v2

2gm2E 2
2

∏
. (11)

This new energy scale can be associated with the Kondo
temperature—an energy scale known to emerge from a
spin-flip scattering of a FS electron by a magnetic impurity
[10]. Remarkably, in our case, the Kondo temperature can
be tuned by varying the frequency and intensity of the
pump. In fact, the logarithmic divergence in Eq. (9) is
an indication of an optically induced Kondo effect.

Let us now turn to the second term in Eq. (8). In fact, it
represents the lowest order in the expansion of the linear
polarization with the impurity level shifted by d´ � �N 2

1�m2E
2
2

P
q

nq

´q2Ed
,

P̃�1� � m2E1

X
p

�1 2 np�
´p 2 ´d 1 d´ 2 v1

. (12)

The origin of d´ can be understood by observing that,
for monochromatic pump, the coupling between the FS
and the impurity can be described by a time-independent
Anderson Hamiltonian HA with effective impurity level
Ed � ´d 1 v2 and hybridization parameter V � mE2.
By virtue of this analogy, d´ is the perturbative solution
of the following equation for the self-energy part:

E0 � S�E0� � �N 2 1�m2E 2
2

X
q

nq

´q 2 Ed 1 E0


 �N 2 1�
D

p
ln

Ed 2 E0

D
, (13)

which determines the renormalization of the effective im-
purity energy, Ed , to Ẽd � Ed 2 E0 [10]. Indeed, to the
first order in the optical field, Eq. (13) yields E0 � d´

after omitting E0 in the right-hand side (rhs).
The logarithmic divergence (9) indicates that, near

the absorption threshold, a nonperturbative treatment
is necessary. Recall that the attractive interaction y0
between a localized hole and FS electrons also leads
to a logarithmically diverging correction (in the lowest
order in y0) even in the linear absorption: dP̃�1� 	
P̃�1�gy0 ln�D��v1 1 ´d��. In the nonperturbative regime,
dP̃�1� 	 P̃�1�, this correction evolves into the Fermi edge
singularity [1]. The question is how the Kondo correction
(9) will evolve in the nonperturbative regime. We first
discuss our results qualitatively and defer the details to
the end of the paper.
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It can be seen from the expression (11) for TK that
there is a well-defined critical pump intensity, Dc �
pgm2E

2
2c �

p

2 �j´dj 2 v2�. The shape of the nonlinear
absorption spectrum will depend sharply on the ratio
between D and Dc. For strong pump, D . Dc, the Kondo
correction (9) will develop into a broad peak with width
D and height p0. This is illustrated in Fig. 2(a).

Much more delicate is the case D ø Dc, which is analo-
gous to the Kondo limit. The Kondo scale TK is then much
smaller than D, which is the case for well-below-resonance
pump excitation, j´dj 2 v2 ¿ D. The impurity density
of states in the Kondo limit is known [10] to have two
peaks well separated in energy by jEdj � j´dj 2 v2 ¿ D

(Ed is the effective level position). As a result, in the
presence of the pump, the system sustains excitations
originating from the beats between these peaks. These
excitations can assist the absorption of a probe photon.
The corresponding condition for the probe frequency
reads jEdj 1 v1 
 j´dj, or v1 
 v2. Thus, in the
Kondo limit, the absorption spectrum exhibits a narrow
peak below the linear absorption onset. This is illustrated
in Fig. 2(b).

To calculate the shape of the below-threshold absorption
peak, we adopt the large N variational wave-function
method by following the approach of [11]. For monochro-
matic optical fields, the polarization (2) can be written as
P̃ � 2m2E1�G,�E0 2 dv� 1 G.�E0 1 dv��, where
G,�´� � �VjTy�´ 2 HA�21T jV� [G.�´� is similar but
with T $ Ty]. In the leading order in N21, jV� is
given by jV� � A�j0� 1

P
q nqaqjq, 1��, where jq, 1� �

N21�2
P

s dy
scqsj0� (j0� represents the full FS). The

coefficients A and ak are found by minimizing HA in

FIG. 2. Schematic plot of the nonlinear absorption spectra vs
probe frequency. (a) Mixed-valence regime: pump-probe spec-
trum for strong pump intensity (thick line) compared with x �3�

approximation (9) (dashed line) and the linear absorption spec-
trum (thin line). (b) Kondo limit: the pump-probe spectrum has
a narrow peak below the linear absorption threshold.
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this basis; one then obtains, e.g., A2 � 1 2 nd , where
nd � �1 1 pẼd�ND�21 is the impurity occupation
[10,11] (ND is finite in the large N limit). The relevant
Green function is obtained as

G,�´� �
p

D

∑
S�´� 1

jS�´�j2

´ 2 S�´�

∏
. (14)

Since S�E0� � E0 [see Eq. (13)], for ´ � E0 2 dv the
second term has a pole at dv � 0 which gives rise to
a resonance. The N21 correction gives a finite reso-
nance width D. Using that the residue at the pole is
�≠S�E0��≠E0 2 1�21 � nd 2 1 [10], we finally obtain

ImP̃K �
p0E2

0�1 2 nd�2

dv2 1 D2 	
µ

pEdTK

ND

∂2 p0

dv2 1 D2 .

(15)

For the last estimate, we used that, in the Kondo limit
�D ø Dc�, 1 2 nd 
 pTK�ND and E0 
 Ed . Then the
rhs of (15) describes the narrow below-threshold peak [see
Fig. 2(b)]. In the Kondo limit, the factor �1 2 nd�2 has the
physical meaning of a product of populations of electrons
in the narrow peak of the impurity spectral function (Kondo
resonance) and “holes” in the wide peak (centered at ´d

below the Fermi level). Note, however, that the above
calculation was not restricted to the Kondo limit. For
D * Dc (mixed-valence regime), we have 1 2 nd 	 1
and E0 	 ND. Then Eq. (15) reproduces the absorption
peak in Fig. 2(a).

Note that, although we considered here, for simplicity,
the limit of the singly occupied impurity level in the ground
state, the Kondo absorption can take place even if the im-
purity is doubly occupied. Indeed, after the probe excites
an impurity electron, the spin-flip scattering of FS elec-
trons with the remaining impurity electron will lead to the
Kondo resonance in the final state of the transition. In
this case, however, the Kondo effect should show up in the
fifth-order polarization.

A feasible system in which the proposed effect might be
observed is, e.g., GaAs/AlGaAs superlattice delta doped
with Si donors located in the barrier. The role of impu-
rity in this system is played by a shallow acceptor, e.g.,
Be. Molecular-beam epitaxy growth technology allows
one to vary the quantum well width and to place accep-
tors right in the middle of each quantum well [12]. In
quantum wells, the valence band is only doubly degener-
ate with respect to the total angular momentum J. Thus,
such a system emulates the large U limit considered here.
The dipole matrix element for acceptor to conduction band
transitions can be estimated as m 	 m0a, where m0 is the
interband matrix element and a is the size of the acceptor
wave function. For typical excitation intensities [2], the
parameter D ranges on the meV scale resulting in TK 	 D

for the pump detuning of several meV.
In conclusion, let us discuss the effect of a finite duration

of the pump pulse t. Our result for x �3� remains unchanged
if t is longer than h̄�TK . If t , h̄�TK , then t will serve
as a cutoff of the logarithmic divergence in (9), and the
Kondo correction will depend on the parameters of the
pump E2 and t as follows: ImP̃

�3�
K ~ E

2
2 ln�Dt�h̄�. In

the nonperturbative regime, our basic assumption was
that, for monochromatic pump, the system maps onto
the ground state of the Anderson Hamiltonian. Our
results apply if the pump is turned on slowly on a time
scale longer than h̄�TK . For a shorter pulse duration,
the buildup of the optically induced Kondo effect will
depend on the dephasing of FS excitations [8]. The role
of interactions between FS and impurity electrons in the
presence of hybridization was addressed in [13]. An
avenue for future studies would be the interplay between
the Kondo absorption and the Fermi edge singularity.
Note finally that the effect of irradiation on the Kondo
transport in quantum dots was investigated in [14,15].
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