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Bose-Einstein Condensation of Dilute Magnons in TlCuCl3
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The recent observation [A. Oosawa et al., J. Phys. Condens. Matter 11, 265 (1999)] of the field-
induced Néel ordering in the spin-gap magnetic compound TlCuCl3 is interpreted as a Bose-Einstein
condensation of magnons. A Hartree–Fock-type calculation based on this picture is shown to describe
the temperature dependence of the magnetization well.

PACS numbers: 75.10.Jm, 05.30.Jp, 75.30.Kz
The Bose-Einstein condensation (BEC) is one of the
most exotic phenomena predicted by quantum mechanics.
Recently, there has been a renewed interest in BEC, be-
cause the realization of BEC by ultracooling of dilute
atoms has become possible [1]. While the BEC of ultra-
cooled atoms is of great interest, there are various experi-
mental limitations. On the other hand, it has been known
for a long time that a quantum spin system can be mapped
onto an interacting Bose gas, and that the off-diagonal
long-range order which characterizes BEC corresponds
to long-range magnetic order in the spin system [2]. It is
then possible to tune the density of bosons (magnons) by
a magnetic field to observe BEC of dilute bosons. How-
ever, an experimental realization of this BEC has not been
reported so far.

In this Letter, we argue that BEC of dilute bosons in a
thermodynamic number �1020 is realized in a recent high-
field experiment on TlCuCl3 [3], which is composed of a
chemical double chain of Cu2Cl6 [3,4]. The compound has
an excitation gap D�kB � 7.5 K above the singlet ground
state, in the absence of the magnetic field [3,5,6]. The ori-
gin of the gap may be attributed to the antiferromagnetic
dimer coupling in the double chain. When the external
field Hg � D��gmB� to the gap is applied, the gap col-
lapses. At finite temperature, the “collapse” of the gap
at Hg does not give a singularity because thermal excita-
tions exist even if H , Hg. However, there seems to be a
phase transition due to the interchain interactions at higher
field H � Hc . Hg, which depends on the temperature.
In Ref. [3] the phase transition was identified as a long-
range magnetic ordering, and was compared with a mean-
field theory (MFT) [7] based on a dimer model. While
the dimer MFT does predict the field-induced ordering,
the experimental features were not well reproduced. In
particular, it predicts almost flat dependence of the criti-
cal temperature Tc on the magnetic field, while in the ex-
periment Tc depends on the magnetic field by a power
law Tf

c � H 2 Hg (see Fig. 1). Moreover, it predicts
almost constant magnetization for T , Tc and concave
magnetization for T . Tc, as a function of temperature T .
However, in the experiment, magnetization was found to
increase as decreasing T below Tc and it is a convex func-
tion of T for T . Tc (see Fig. 2).
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We will show that the transition is rather well described
as the BEC of magnons. While the details of the ex-
change interactions in TlCuCl3 are not known yet, excita-
tions above the singlet ground state generally can be treated
as a collection of bosonic particles—magnons [8]. As dis-
cussed in Ref. [3], the magnetic anisotropy in TlCuCl3 is
negligible, in which case the number of magnons are con-
served in a short time scale (but not conserved in a longer
time scale). We assume that magnons carry spin 1, as gen-
erally expected.

Under a magnetic field H � Hg, the magnons with
Sz � 1 can be created by small energy. Thus, at low tem-
peratures T ø D and H � Hg, we must consider only
those magnons. The chemical potential of the magnons
is given by m � gmB�H 2 Hg�. The total number of
magnons N is associated with the total magnetization M
through M � gmBN . If the magnons are free bosons, the
number of magnons would be infinite for H . Hg. How-
ever, in the spin system, it is actually bounded due to a
hard-core-type interaction between magnons.

The transverse components of the exchange interactions
give rise to hopping of the magnons, while the longitudi-
nal components give rise to the interaction. Although the

FIG. 1. The phase diagram in TlCuCl3. The solid line denotes
the fitting with the formula �g�2� �Hc�T � 2 Hc�0�� ~ Tf with
�g�2�Hc�0� � 5.61 T and f � 2.2.
© 2000 The American Physical Society
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FIG. 2. The low-temperature magnetizations of TlCuCl3 mea-
sured at various external fields for H k b.

exchange interaction and thus hopping might be compli-
cated, generically the dispersion relation of a magnon is
quadratic near the bottom. Thus the low-energy effective
Hamiltonian for the (Sz � 1) magnons is given by
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Here the momentum k is measured from the minimum of
the magnon dispersion. For simplicity, we do not con-
sider the case where the magnon dispersion has more than
one minimum [9]. The effective masses ma is related to
the curvature of the dispersion relation in the direction
of a. By a rescaling of momentum, we may consider
isotropic effective Hamiltonian instead. This is nothing
but the Hamiltonian for the nonrelativistic bosons with a
short-range interaction.

Moreover, in the low-density and low-temperature limit,
only the two-particle interaction is important and it can be
replaced by delta-function interaction y�q� � y0. Thus
the effective Hamiltonian is given by
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While this can be derived from some specific models
[10,11], it is universal in the low-temperature and low
magnon density limit, irrespective of the details of the ex-
change interaction.

Since the number of magnons is actually not conserved
due to the small effects neglected in the Hamiltonian, we
have a grand canonical ensemble of the bosons. The
“chemical potential” can be controlled precisely by tuning
the magnetic field. When the chemical potential becomes
larger than a critical value, the system undergoes a BEC.
Thus the spin-gap system in general would provide a great
opportunity to study BEC in a grand canonical ensemble,
with a thermodynamically large number of particles.

The idea that BEC is induced by the magnetic field in
a spin-gap system has been discussed several times, for
example, in Ref. [12] for a Haldane gap system. Gia-
marchi and Tsvelik [11] have recently discussed the three-
dimensional ordering in coupled ladders in connection with
BEC. However, as far as we know, there has been no ex-
perimental observation of magnon BEC induced by an ap-
plied field.

We first consider the normal (noncondensed) phase.
Within the Hartree-Fock (HF) approximation, the momen-
tum distribution of the magnons is given by [13]

nk � 	ay
k ak
 �

1
eb�´k2meff� 2 1

, (3)

with ´k � h̄2k2�2m and meff � m 2 2y0n. The magnon
density n � N�Nd (Nd is the total number of the dimer
pairs) has to be determined self-consistently by

n �
Z d3k

�2p�3 nk �
1

L3 g3�2�z� , (4)

where z � ebmeff is the fugacity, L � �2p h̄2�mkBT�1�2

is the thermal de Broglie wavelength, and gn�z� �P`
l�1 zl�ln is the Bose-Einstein function. BEC occurs

when the effective chemical potential meff vanishes so that
m � 2y0n. Setting z � 1 in (4) gives the temperature
dependence of the critical value of the chemical potential

mc � 2y0

µ
mkBT
2p h̄2

∂3�2

z �3�2� . (5)

This implies that the temperature dependence of the criti-
cal magnetic field at low temperatures is �Hc�T� 2 Hg� ~

T3�2. This power-law dependence is independent of the
interaction parameter y0.

When m . mc, one has the macroscopic condensate or-
der parameter 	a0
 �

p
Nc eiu fi 0, where Nc is the total

number of the condensate magnons. In terms of the origi-
nal spin system, this means that there is a (staggered) trans-
verse magnetization component m� � gmB

p
nc�2 with

nc � Nc�Nd . Within the Hartree-Fock-Popov (HFP) ap-
proximation, the condensate density is determined by [14]

m � y0nc 1 2y0ñ , (6)

where ñ � n 2 nc is the density of the noncondensed
magnons, which is given by
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where we have used the HFP energy spectrum Ek �p
´

2
k 1 2´ky0nc and the Bose distribution fB�Ek� �

1��ebEk 2 1�. The first term of (7) represents the deple-
tion of the condensate due to interaction between magnons,
which reduces to the ground-state noncondensate density
at T ! 0. The second term is the contribution from ther-
mally excited noncondensate magnons, which vanishes at
T ! 0. Equation (6) is to be solved self-consistently in
conjunction with Eq. (7). Then the total magnon density
is given by

n � nc 1 ñ �
m

y0
2 ñ . (8)

In particular, the magnon density at T ! 0 is given by
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A simple approximation that ignores the deviation of z
from 1 for T fi Tc is often used in the literatures [11,15].
As we will show later, while it is useful in obtaining an
intuitive understanding, it is not justified. From Eqs. (4)
and (8), the approximation z � 1 gives [we use y0nc � 0
in (7) for T , Tc] [11]
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It predicts the cusplike minimum of the magnon density
(magnetization) at T � Tc. In contrast, the dimer MFT
[7] predicts a constant magnetization below Tc.

Figure 2 shows the observed low-temperature magneti-
zations of TlCuCl3 at various external fields for H k b.
We can see the cusplike anomaly at the transition tempera-
ture, as predicted by the present theory. The similar tem-
perature dependence of the magnetization can be observed
for H��1, 0, 2̄� [3]. Our magnon BEC picture captures
the main qualitative feature of the temperature dependence
of the magnetization, which cannot be understood in the
dimer MFT. The increase of n for decreasing T below Tc

is due to condensation of the bosons; the cusp shape of
the magnetization curve observed in the experiment can be
regarded as evidence of the magnon BEC. We note that,
in the range of the experiment, the magnon density is of
order of 1023 and is consistent with the assumption of
diluteness.
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However, the approximation (10) does not precisely
reproduce the experimental result. In particular, it predicts
independence of n on the applied field m for T . Tc while
the dependence was observed experimentally. Part of the
discrepancy may be due to the approximation z � 1. Ac-
tually, even in the HF framework, the approximation z � 1
is not really justified. In Fig. 3, we plot the temperature
dependence of the total density n above and below the
transition temperature Tc obtained by solving the self-
consistency equations (4) and (8) numerically, without
assuming z � 1. The interaction parameter y0 and the
effective mass m are estimated from the experimental
data as y0�kB � 400 K and mkB�h̄2 � 0.025 K21. The
self-consistent calculation does predict that the total den-
sity n is dependent on the applied field for T . Tc, which
is qualitatively consistent with the experiment. In Fig. 4
we also plot the temperature dependence of the staggered
transverse magnetization component m�. Direct measure-
ments of m� using neutron diffraction are in progress.

We see a discontinuity in magnon density (magnetiza-
tion) arises at the transition point in Fig. 3. This is because
our HFP approximation is inappropriate in the critical re-
gion, and leads to an unphysical jump in the condensate
density nc [14]. In the vicinity of the critical point, the
HFP approximation eventually breaks down; the critical
behavior then belongs to the so-called 3D XY universality
class [16]. On this ground, in the vicinity of Tc, the trans-
verse magnetization m� is expected as m� ~ �Tc 2 T �b ,
where b � 0.35.

Figure 1 shows the experimentally determined magnetic
phase diagram of TlCuCl3. We fit the phase boundary Hc

as a function as a temperature Tc with the formula �g�2� 3

�Hc�T � 2 Hc�0�� ~ Tf. The best fitting is obtained with
�g�2�Hc�0� � 5.61 T and f � 2.2 [17]. The obtained ex-
ponent f � 2.2 disagrees somewhat with the HF approxi-
mation (5) which gives f � 3�2. We note that exactly
z � 1 holds at the transition point, and thus f � 3�2 is a
definite conclusion within the HF framework. On the other
hand, the dimer MFT predicts Hc�T � to be exponentially

FIG. 3. The temperature dependence of the magnetization.
We have used y0�kB � 400 K, mkB�h̄2 � 0.025 K21, and
g � 2.06.
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FIG. 4. The temperature dependence of the transverse magne-
tization m�. We have used the same set of parameters as in
Fig. 3.

flat at low temperature [7]. The observed power-law de-
pendence is qualitatively consistent with the magnon BEC
picture, compared to the dimer MFT.

On the other hand, a better description of the experimen-
tal data near the critical point requires more sophisticated
analysis beyond the HFP approximation. Furthermore, in
the experiment there may be other effects that were ignored
in the effective Hamiltonian (2), such as impurities. These
are interesting problems, to be studied in the future.

To conclude, the essential feature of the experimental
observation on TlCuCl3, which cannot be understood in
the traditional dimer MFT, is captured by the magnon BEC
picture. The present system could be the first experimental
observation of a field-induced magnon BEC. It would give
a new way of studying BEC in a grand canonical ensemble,
with an easily tunable chemical potential (magnetic field)
and a thermodynamically large number of particles. Simi-
lar BEC of magnons would be observed in various ladder
compounds [18] which have a spin gap and spin-1 excita-
tions. We also expect the magnon BEC in other magnetic
systems in the vicinity of the gapped phase, which can be
the singlet ground state due to large single-ion anisotropy
[19], the completely polarized state [2,9], or the “plateau”
phase in the middle of the magnetization curve [20]. An
essential requirement for observing BEC is that the sys-
tem is (approximately) rotationally invariant about the di-
rection of the applied magnetic field, so that the number
of magnons is conserved.
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