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Effective “Penetration Depth” in the Vortex State of a D-Wave Superconductor
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The temperature and the field dependence of the effective magnetic penetration depth (leff) in the
vortex state of a d-wave superconductor, as measured by muon spin rotation (mSR) experiments, is
calculated using a nonlocal London model. We show that at temperatures below T � ~

p
B, the linear

T dependence of l
22
eff crosses over to a T3 dependence. This could provide an explanation for the low

temperature flattening of the l
22
eff curve observed in a recent mSR experiment.

PACS numbers: 74.60.Ge
Recent experiments on quasiparticle response in the
vortex state of the cuprate superconductors have indicated
quite unexpected behavior. Krishana et al. discovered an
anomalous plateau in the longitudinal thermal conductivity
kxx of Bi2Sr2CaCu2O81d [1] and YBa2Cu3O72d (YBCO)
[2] at high magnetic fields which they attributed to the
opening of a second gap of dxy symmetry. Scanning tun-
neling spectroscopy on YBCO compounds [3] lent support
to this scenario by suggesting the existence of localized
quasiparticles in the vortex core regions which is pos-
sible only for a gapped excitation spectrum [4]. Sub-
sequent measurements of Aubin et al. [5] discovered
hysteretic behavior in the thermal conductivity which is
a signature of the influence of the vortex lattice and im-
purities on kxx . Furthermore, at temperatures below 1 K
they detected an increase of kxx with the magnetic field
instead of a decrease [6]. This is actually in agreement
with the existence of nodes in the superconducting gap
and in contradiction with the dx22y2 1 idxy symmetry
scenario. Theoretically, the possibility of a field induced
dxy gap was discussed by Laughlin and others [7], and
attempts have been made to explain the observed strange
behavior of kxx without invoking mixed order parameter
symmetry [8].

The question of the existence of the second order
parameter was recently raised once again by Sonier
et al. in their muon spin rotation �mSR� experiment [9].
At high magnetic fields, they observed a flattening of l

22
eff

(defined in these experiments as the width of magnetic
field distribution) at low temperatures in contrast to the
T -linear behavior expected in a d-wave superconductor
[10,11]. If one assumes that l

22
eff is proportional to the

superfluid density rs, then such a flattening could be
indicative of the opening of a gap in the quasiparticle
excitation spectrum, which would result in exponentially
activated behavior of rs�T �. On the other hand, experi-
ment finds strong dependence of leff�T ! 0� on the
magnetic field. This argues against the gap since within
conventional BCS-type models the opening of a gap
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should not affect the value of rs�T ! 0�. In this Letter
we argue that the simple relation l

22
eff ~ rs is not valid

for the penetration depth extracted in these experiments at
finite fields and that with proper definition the observed
behavior of l

22
eff �T � can be explained very naturally by

a nonlocal London model for a d-wave superconductor
in which the superfluid density rs remains linear in
temperature.

High Tc materials are extremely type II superconductors
in the sense that their coherence length j is much smaller
than their penetration depth l. Thus naively one would
expect that the local London model well describes their
magnetic behavior. However, in order to study the electro-
magnetic response of a d-wave superconductor it is nec-
essary to define a momentum dependent coherence length,
jp̂ � yF�pDp̂ , which diverges along the node directions.
This divergence gives rise to nonlocal dependence between
the supercurrent and the vector potential. Kosztin and
Leggett [12] showed that in the Meissner state this non-
local relation can produce a T2 dependence of the pene-
tration depth, instead of linear T dependence, below some
crossover temperature given by T�

KL � D0�j0�l0�, where
D0 is the maximum gap, j0 � yF�pD0, and l0 is the Lon-
don penetration depth. Such an effect is field independent
and can occur only at very low temperatures. Therefore,
it cannot directly explain the mSR observation assuming
that leff is the same as the Meissner penetration depth.
We will show below that an analogous calculation with a
new definition for the penetration depth which is similar
to its definition in mSR experiments gives leff � T3 for
T , T�. Here T� � D0�j0�d�, and d ~

p
Fo�B is the

distance between vortices, with F0 being the flux quan-
tum. T� is now field dependent and could be much larger
than T�

KL.
We have studied [13–15] the effect of nonlocality and

nonlinearity due to the field induced excitations at the gap
nodes [16], in the vortex state of a d-wave superconductor
using a generalized London model. In Ref. [15] we de-
fined an effective penetration depth leff so as to closely
© 2000 The American Physical Society



VOLUME 84, NUMBER 25 P H Y S I C A L R E V I E W L E T T E R S 19 JUNE 2000
0 2 4 6 8
B [T]

1

1.1

1.2

1.3

1.4
λ ef

f /
 λ

0
Nonlinear+Nonlocal 
Nonlocal Only
Nonlinear Only
 (µSR Data)/1010
 (µSR Data)/1078

FIG. 1. Comparison between our zero T nonlinear-nonlocal
London theory (with l0 � 1078 Å) and the recent mSR data
[9] extrapolated to T � 0.

correspond to the quantity measured in mSR experiments.
Figure 1 presents the result of nonlinear-nonlocal calcula-
tion of leff based on the theory developed in Refs. [14,15].
The effect of the nonlinear corrections on leff, as shown
in Fig. 1, saturates at high fields and stays effectively field
independent for B . 1 T. Most of the field dependence
of leff, especially at high fields, therefore comes from the
nonlocal contributions. The effect of the nonlinear correc-
tions is just to shift the value of leff by a constant, which
can be compensated by rescaling l0. In Fig. 1, we com-
pare our theory with the mSR data reported in Ref. [9]. We
find that it is possible to fit the experimental data to both
nonlinear-nonlocal and nonlocal-only curves, with fairly
good agreement, by just changing the scale. At high fields
both curves provide good fits. Even below 1 T the agree-
ment between the experimental data and the nonlocal-only
curve is fairly good, although including nonlinear correc-
tions enhances the agreement especially at 0.1 T. The ex-
cellent agreement between our theory and the experimental
data suggests that the same effects might be important for
the temperature dependence of leff and might be in fact
responsible for the mSR observation.

The effective penetration depth in the vortex state has
also been studied numerically by Wang and MacDonald
[17] within a lattice model of a d-wave superconductor.
This approach is capable of correctly accounting for the
vortex core physics, which is beyond the scope of our
London model. On the flip side, because of the system
size limitations, the approach of Ref. [17] is limited to
relatively high fields B * 10 T. The present approach is
well suited to address the low-field regime (0.1 T & B &

10 T) which is of greatest experimental interest in cuprates.
We now present a brief discussion of analytical and nu-

merical calculations leading to the temperature and field
dependence of leff. In order to avoid unnecessary com-
plications we only explicitly consider the nonlocal effects.
Nonlinear corrections are included only by rescaling the
value of l0, as discussed above. A more detailed descrip-
tion of the theory is given in Refs. [14,15]. To linear or-
der, the relation between the supercurrent j and the vector
potential A in a superconductor can be written in Fourier
space as

jk � 2�c�4p�Q̂�k�Ak . (1)

where Q̂�k� is the electromagnetic response tensor. Ap-
plying the linear response treatment of Gorkov equations
generalized for an anisotropic gap, one can calculate the
kernel Q̂�k� in the weak coupling limit. One finds [14]

Qij�k� �
4pT

l
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where gk � vF ? k�2, l0 �
q

c2�4pe2y
2
FNF is the Lon-

don penetration depth, vn � pT �2n 2 1� are the Mat-
subara frequencies, and the angular brackets mean Fermi
surface averaging. Equation (2) is valid for an arbitrary
Fermi surface and gap function.

Besides the temperature dependence contained in the
Matsubara frequencies in (2), the gap itself has tempera-
ture dependence which becomes important at temperatures
approaching Tc. Assuming an isotropic Fermi surface,
we use the simple form Dp̂�T � � D�T � cos2u, for the gap
where u is the angle between the internal momentum p
and the x direction. In the weak coupling limit and in the
absence of magnetic field, the function D�T � can be ob-
tained by solving the ordinary BCS gap equation which in
the d-wave case is

1
V

� T
X
p,vn

cos22u

v2
n 1 e2

p 1 D�T �2 cos22u
, (3)

where V is the interaction potential in the d-wave channel
and ep is the dispersion relation. At finite magnetic fields
this equation will change and a full self-consistent calcu-
lation will be necessary to obtain D�T �. However, since
the magnetic fields of our interest are far below the upper
critical field Hc2, and since we focus only on the regions
outside the vortex cores, we can assume (to a good approxi-
mation) that Eq. (3) holds even in the presence of a weak
magnetic field.

One can write the London equation purely in terms of
magnetic field, by eliminating j from (1) and using Am-
père’s law j � �c�4p�= 3 B:

Bk 2 k 3 �Q̂21�k� �k 3 Bk�� � 0 . (4)

In the vortex state it is furthermore necessary to insert a
source term F�k� on the right-hand side of Eq. (4) which
accounts for the phase winding around the vortex cores.
We use a source function with the usual Gaussian cutoff
F�k� � e2j

2
0 k2�2 [18].

As in Ref. [15], we define leff by

l24
eff � l24

0

µ
dB2

dB2
0

∂
, (5)
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where dB2 is the second moment of the field distribution
in the vortex lattice and dB2

0 is the same quantity for the
magnetic field B0��r� obtained by solving the ordinary Lon-
don model on a triangular lattice with the same B̄ and l0.
We emphasize that this way of defining leff is roughly
equivalent to the way it is computed from the mSR data.
Using (4) and (5) we get

l24
eff � C

X
kfi0

e2j
2
0k2

�1 1 Lijkikj�2 � C
X
kfi0

e2j
2
0k2

�Lijkikj�2 , (6)

where k are the reciprocal lattice wave vectors and

Lij�k� �
Qij�k�

det Q̂�k�
, C21 �

X
kfi0

e2j
2
0 k2

k4 . (7)

Notice that only wave vectors of O�d21� and larger con-
tribute to the vortex lattice field distribution and the re-
sponse to a magnetic field at these wave vectors can be
much different than at zero wave vector in a superconduc-
tor with gap nodes. At low T , only the regions near the
gap nodes are important in the calculation of Qij�k�. We
can therefore linearize the gap as Dp̂ � Du � 2D�T �u,
where u is the angle measured from the node, and let vF

in Eq. (2) take only the node directions. As a result, Qij

will be diagonal in the 45± rotated frame. Defining q1,2 �
�kx 6 ky��

p
2 we can write Qij � l

22
0 �1 1 K�qi , T ��dij.

We then have

L11�q� � l2
0�1 2 K�q2, T �� ,

L22�q� � l2
0�1 2 K�q1, T �� , (8)

L12�q� � L21�q� � 0 ,

This is actually a Taylor expansion in K which is small at
low B and T . Substituting into (6) we get

leff

l0
� 1 2

C̃
2

X
q̃fi0

K̃�q̃1, T �q̃2
2 1 K̃�q̃2, T �q̃2

1

q̃6 , (9)

where q̃ � qd, C̃ � Cd4, and K̃�x, T � � K�x�d, T �. We
have also taken the upper cutoff z

21
d � d�j0 to infinity

since it does not affect our calculations (we keep zd finite
in our numerical calculation but our results are insensitive
to its exact value).

At T � 0 for q̃zd ø 1 one can write [12] K̃�q̃, 0� �
2�p2�8�zdq̃. Substituting back into (9) we get

dleff�T � 0� ~ zd �
p

B̄ . (10)

This is in complete agreement with our numerical calcu-
lation and mSR data [9] (cf. Fig. 1), and also with other
calculations [19].

At T . 0, Eq. (9) can be written as

dleff

l0
� 2

C̃
2

X
q̃fi0

dK̃�q̃1, T �q̃2
2 1 dK̃�q̃2, T �q̃2

1

q̃6

where dleff � l�B, T � 2 l�B, 0� and dK̃�q̃, T � �
K̃�q̃, T � 2 K̃�q̃, 0�. We follow Ref. [12] by writing

K̃�q̃, T � � K̃�0, T �F
µ

q̃
t

∂
, (11)
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where t � T�T�, K̃�0, T � � 22�ln2�T�D0 is the kernel
obtained in local approximation, and F�z� is a universal
function which can be approximated by

F�z� � 1 2 c1z for z , 2 ,

F�z� � c0�z2 for z . 2 .
(12)

Here, c0 and c1 are constants. Substituting (12) and (11)
into (9) we find that, for t ø 1, F�z� falls into the z . 2
regime for all reciprocal lattice vectors q̃. This imme-
diately gives dleff ~ T3. At higher temperatures on the
other hand, there will exist a significant number of points
with z , 2 which would give linear T behavior. Thus in
general

dleff ~ T3 for T ø T�,

dleff ~ T for T� ø T ø Tc .
(13)

Figure 2 shows the results of our numerical calcula-
tion of leff as a function of temperature. We take l0 �
1078 Å, which is the value that produces the best fit to the
experimental data (cf. Fig. 3), and k � l0�j0 � 68. We
also assume a triangular vortex lattice aligned with x and
y (a and b) directions. We have tried changing the core
size as well as the shape of the vortex lattice and our results
remained unchanged. The penetration depth is no longer
linear at low temperatures, unlike the superfluid density
(the upper curve). The deviation from linearity is stronger
at higher fields, in complete agreement with the mSR ob-
servation [9] and previous theoretical work [17]. At high
enough fields, the dependence is in complete agreement
with the T3 form obtained analytically. The curves for
different fields join to a single curve at higher tempera-
tures. This is essentially because the nonlocal corrections
are most pronounced for the quasiparticles close to the gap
nodes. At higher temperatures the response becomes domi-
nated by the quasiparticles far from the nodes which feel
much weaker nonlocal effects.
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FIG. 3. A comparison between our nonlocal calculation and
mSR data.

Figure 3 presents a comparison between our results and
the experimental data. In order to get a good fit, we set
D0 � D�0� � 2.65Tc which is also what one obtains from
the gap equation (3). We have normalized both experimen-
tal and theoretical data with l0 � 1078 Å. The agreement
between our theory and the data is good at B � 4 T and
6 T, but at B � 0.5 T the theory shows less linearity at low
temperatures compared to the experimental data, although
they agree fairly well at T � 0 and high T .

As we mentioned earlier, a complete calculation should
include nonlinear corrections [15,16] in addition to the
nonlocal corrections considered here. However, as ap-
parent from Fig. 1, at T � 0 the main source of the field
dependence of leff is the nonlocal effect. Since this field
dependence is closely related to the flattening of the curves
at low T , it is reasonable to assume that nonlocal effects
also dominate the T dependence. The main discrepancy
between the theory and experiment in Fig. 3 is the lack of
linearity at 0.5 T; however, it is difficult to envision how
nonlinear corrections could cure this. Given the inherent
uncertainties in the extraction of l from the mSR data we
consider the overall agreement to be reasonable even with-
out inclusion of the nonlinear effects.

In summary, we have calculated the field and tempera-
ture dependence of the effective penetration depth leff
from a nonlocal London model of a d-wave superconduc-
tor. We used a definition of leff which permits a direct
comparison to the mSR experimental data. Our results
exhibit a T3 dependence in the l

22
eff curve below T� �

D0�j0�d� �
p

B, quantitatively consistent with the experi-
mental data on YBCO [9]. This flattening has nothing to
do with the reduction of the superfluid density or opening
a true gap at high magnetic fields. Rather, it is a conse-
quence of the nonlocal response of a d-wave superconduc-
tor which modifies the magnetic field distribution in the
vortex lattice as compared to an ordinary London model.
Thus, as pointed out previously [15,17], it is essential to
make a distinction between the London penetration depth
lL (as measured, e.g., in the microwave experiment [10])
and the effective penetration depth leff deduced from the
magnetic field profile in a mSR experiment. In the present
model leff flattens at low temperatures and finite field
while lL remains linear in T .
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