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A numerical study of the transfer across random fractal surfaces shows that their responses are very
close to the response of deterministic model geometries with the same fractal dimension. The simulations
of several interfaces with prefractal geometries show that, within very good approximation, the flux
depends only on a few characteristic features of the interface geometry: the lower and higher cutoffs
and the fractal dimension. Although the active zones are different for different geometries, the electrode
responses are very nearly the same. In that sense, the fractal dimension is the essential “universal”
exponent which determines the net transfer.

PACS numbers: 61.43.Hv, 41.20.Cv, 82.65.Jv
Many random processes, such as aggregation, diffusion,
fracture, and percolation, build fractal objects [1,2]. Frac-
tal geometry essentially describes hierarchical structures
[3]. If properties of these random systems depend on the
hierarchical character of their geometry, then the study of
a deterministic structure with the same fractal dimension
may provide a good approximation of the random system
properties [4]. The question is significant since fractal and
prefractal geometries are widely used in mathematical ap-
proaches or numerical simulations as a convenient model
of irregularity. They are also more simply addressed by al-
gebraic calculations and incorporated into numerical mod-
els for computer simulation. It is then an important matter
to decide whether simple deterministic, artificial, fractals
could help determine the properties of random, natural,
fractals [5,6]. In particular, it is a question whether experi-
ments performed on model fractal geometries [7] may help
understand the behavior of real complex structures.

The property which is discussed here is the Laplacian
transport to and across irregular and fractal interfaces.
Such transport phenomena are often encountered in nature
or in technical processes: properties of rough electrodes in
electrochemistry, steady-state diffusion towards irregular
membranes in physiological processes, the Eley-Rideal
mechanism in heterogeneous catalysis in porous catalysts,
and in NMR relaxation in porous media. In each of these
examples, the interface presents a finite transfer rate,
similar to a redox reaction, or a finite permeability, or
reaction rate which is due to specific physical or chemical
processes.

The mathematical formulation of the problem is simple.
One considers the current flowing through an electro-
chemical cell as shown in Fig. 1. The current �J is
proportional to the Laplacian field �=V , which can be
viewed as an electrostatic field in electrochemistry, or a
particle concentration field in diffusion problems. Then
the flux and field are related by classical equations of the
type �J � 2s �=V , where s is the electrolyte conductivity
(or particle diffusivity in diffusion or heterogeneous
catalysis). The conservation of this current throughout the
0031-9007�00�84(25)�5776(4)$15.00
bulk yields the Laplace equation for the potential V :

div�2s �=V � � 0 ) DV � 0 . (1)

The boundary presents a finite resistance r to the current
flow. In the simplest case, this resistance can be expressed
by a linear relation linking the current density across the
boundary to the potential drop across that boundary. The
local flux and potential drop are then linked by trans-
port coefficients, such as the faradaic resistance in electro-
chemistry, the membrane permeability in physiological
processes, or again the surface reactivity in catalysis. If
one assumes that the outside of the irregular boundary is at
zero potential, current conservation at the boundary leads
to the following relation:

�J ? �n � 2
V
r

, (2)

FIG. 1. Schematic representation of an electrochemical cell.
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or

≠V
≠n

�
V
L

with L � sr . (3)

The parameter L is homogeneous to a length. Given
the geometry, the value of this parameter determines the
behavior of the system [8,9]. The overall response of such
a system is measured by one scalar quantity, its impedance
Ztot, which is the ratio between the applied potential and
the total flux:

Ztot �
V0

F
. (4)

The contribution of the finite interface resistivity to this
global impedance is given by a “spectroscopic” impedance,
defined as Zspect � Ztot 2 Z0, Z0 being the impedance of
the cell with zero interface resistivity [9]. The main result
discussed below is that the electrode impedance Zspect is
nearly independent of the random character of the fractal
interface, even though the regions where the current is con-
centrated are very different. This is found from a numeri-
cal comparison between impedances of deterministic and
random electrodes with the same fractal dimension. Two
cases are studied: (a) deterministic and random von Koch
electrodes (dimension Df � ln4� ln3); (b) a deterministic
electrode of dimension Df � 4�3 and a self-avoiding ran-
dom walk geometry with the same dimension.

The deterministic von Koch curve, or classical
snowflake curve, is obtained by dividing a line segment
into three equal parts, removing the central segment,
and replacing it by two other identical segments which
form an equilateral triangle [3]. A random von Koch
curve can be defined simply by choosing randomly the
side of the segment where the triangle is created at
each step of the building process. The cases where two
triangles would touch are excluded as they correspond
to a geometrical pathology that does not represent the
randomness of a natural system. The result of this process
is shown in Fig. 2. After three or more generations, it
looks more like a realistic random boundary than a simple
mathematical curve. It is then possible to automatically
generate different boundaries that have the same fractal
dimension and the same perimeter. By definition, fractal
geometries exhibit a large scale of lengths. For instance,
at the sixth generation, the ratio between the smallest
feature l (smaller cutoff) of the irregular boundary and
the diameter L (larger cutoff) is 36 � 729 while the
length of the perimeter is Lp � 46l � 4096l. Computing
on a regular grid within such geometries would be very
memory and time consuming. A finite element method
is then used. The standard variational formulation of the
problem is discretized with a triangular mesh, obtained
from a Delaunay-Voronoï tessellation and P1-Lagrange
interpolation. The linear system obtained in such a way
is solved by using the Cholesky method, from the Finite
FIG. 2. The building process of random von Koch curves. The
same random process can create various interface topographies.
They share the same size, the same perimeter, and the same
fractal dimension.

Element Library MODULEF [10]. Examples of meshes
with a sixth generation boundary are shown in Fig. 3.

Computations were carried out for the two deterministic
boundary geometries and the two random geometries of
generation six shown in Fig. 4. The figure presents the

FIG. 3. A finite element mesh for the sixth generation von
Koch random electrode. Top: An example of a finite element
mesh for the sixth generation interface. Bottom: Local zoom of
the mesh.
5777



VOLUME 84, NUMBER 25 P H Y S I C A L R E V I E W L E T T E R S 19 JUNE 2000
FIG. 4 (color). Isopotential curves for von Koch deterministic
and random electrodes with L � 0 (Dirichlet boundary condi-
tion). The equipotential lines are the lines separating regions of
exponentially decreasing potential: V � 1 at the bottom then
1�2, 1�4, 1�8, . . . . The current density is proportional to the
gradient of the potential. The current is then large in regions
where the curves are close. Note that the current flows through
the interface primarily at the tips. These active zones are found
at very different locations for different electrodes.

isopotential curves for L � 0. Since the current density
is proportional to the gradient of the potential, one can
detect regions of large current density from the distance
between two consecutive isopotential curves: the closer the
equipotentials, the larger the current density. As expected,
most of the current flows through the irregular interface at
the tips. This gives a very different current map for each
geometry. Therefore, for the different electrodes the active
zones are very different.

The second type of electrodes to be compared is shown
in Fig. 5. The top figure shows the second generation
of a deterministic fractal electrode with dimension Df �
ln16� ln8 � 4�3 while the bottom represents a particular
self-avoiding walk with the same 4�3 fractal dimension.
Both electrodes have the same perimeter and the same
smaller cutoff. Here, even more than above, the active
zones are totally different.

For each geometry, the impedances have been computed
for an extended range of the surface resistivity r . The re-
sults are shown in Fig. 6 for two categories of geometries:
sixth generation of von Koch electrodes and the two elec-
trodes of Fig. 5. The parameter L�l � sr�l ranges be-
tween 1 and 105 for generation six and between 1021 and
5 3 103 for the second type. The limitation of the range
is due to limitations in computer time and memory.

It is striking that, despite very different current distri-
bution in the bulk and at the interface, the impedances are
very close for all values of the surface resistivity. The be-
havior of different interfaces are nearly indistinguishable:
random and deterministic interfaces behave in the same
manner. This could be considered as a partial answer to
the question “Can one hear the shape of an electrode?”
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FIG. 5 (color). Isopotential curves for deterministic and ran-
dom electrodes of fractal dimension 4�3 with L � 0 (Dirichlet
boundary condition). The generator for the deterministic elec-
trode is shown on the top of the figure. Same color code as
Fig. 4. The active zones are entirely different.

addressed in [9,11]. In this frame, the main parame-
ters drawn from practical impedance spectroscopy mea-
surements would be only the size, the perimeter, and the
equivalent fractal dimension of the interface.

A more demanding comparison between the impedances
can be made by comparing the values of r�Z as shown
in Fig. 6. This quantity can be identified as an equiva-
lent active length Leq [12]. One finds three successives
regimes, L , l, l , L , Lp , and finally Lp , L, sepa-
rated by smooth crossovers. These regimes can easily
be compared to the so-called “land surveyor approxima-
tion” [13]. This method allows one to compute Zspect
through a finite size renormalization of the interface ge-
ometry, without solving the Laplace equation. For small r
(or L ø 1), there is a linear regime in which Zspect is pro-
portional to r , that is, Zspect � r�Leq with Leq � L [9].
For values of L . l, there is a fractal regime in which,
in first approximation, Zspect � �r�L� �l�L� �L�l�1�Df and
Leq � L�L�l��Df21��Df (for more detailed expressions of
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FIG. 6. Top: Plots of the electrode impedance Zspect as a func-
tion of L�l � rs�l, for various deterministic and random ge-
ometries. Note curve similarities despite very different current
maps. Bottom: Plots of the “equivalent length” of the working
surfaces defined by Leq � r�Zspect. Approximate expressions
of Zspect and Leq, mentioned in the text, are indicated by the
dashed lines.

the exponents, see [14–16]). Finally, for values of L

much larger than the perimeter length Lp , the exact value
is Zspect � r�Lp and Leq � Lp . These three asymptotic
behaviors are shown in the figure and are found to match
the numerical results with good accuracy.

Note that the electrodes of Fig. 5 are in some sense
“poor” fractals because the range of geometrical scaling
is relatively small and it has been a matter of debate re-
cently whether the fractal concept should be of any use
when the scaling range of the geometry is too small. For
the phenomena considered here, one can observe that the
fractal description of this limited range geometry is really
useful.

In summary, one has given several examples where the
net transfer across an irregular surface is nearly indepen-
dent of the randomness of its geometry, although it depends
strongly on the geometry through its fractal dimension.
The fact that the overall response remains the same indi-
cates that, buried in the fractal description, there exist the
geometrical correlations that govern the overall effect of
screening at different scales. This result, obtained on two
different types of randomness, suggests that the response
could be universal within a very good approximation for a
large class of fractal random geometries.
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