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A new Eulerian variational principle is presented for the Vlasov-Maxwell equations. This principle
uses constrained variations for the Vlasov distribution in eight-dimensional extended phase space. The
standard energy-momentum conservation law is then derived explicitly by the Noether method. This
new variational principle can be applied to various reduced Vlasov-Maxwell equations in which fast time
scales have been asymptotically eliminated (e.g., low-frequency gyrokinetic theory).

PACS numbers: 52.25.Dg, 03.50.De
The variational formulation for the Vlasov-Maxwell
equations has been a topic of interest in plasma physics
ever since Low presented his Lagrangian variational prin-
ciple [1], which combined the standard action functional
for the electromagnetic field with an action functional for
a Vlasov distribution of particles. Since then a variety of
variational formulations for the Vlasov-Maxwell equations
have appeared [2–4] (see Refs. [5] and [6] for recent
works on this topic). A Eulerian variational principle for
the Vlasov-Maxwell equations was recently derived by
Cendra et al. [6] by transforming the Low Lagrangian
formulation and introducing constrained variations on
the phase-space Hamiltonian vector field u � �z and on
the phase-space Vlasov density F in terms of a virtual
displacement w in six-dimensional phase space: du �
�≠t 1 u ? ≠z�w 2 w ? ≠zu and dF � 2≠z ? �Fw�.
These expressions are in complete analogy with the Euler-
ian variations for the fluid velocity v and fluid density n
for ideal fluids expressed in terms of the virtual fluid dis-
placement j [7], where dv � �≠t 1 v ? =�j 2 j ? =v
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and dn � 2= ? �nj �. The expression for dv is known as
the Lin constraints on the variation of the fluid velocity;
the general framework for constrained variations in
continuum theories is discussed in Refs. [6] and [8].

The purpose of this Letter is to present a new Euler-
ian variational principle for the Vlasov-Maxwell equations
which is simpler than all previous variational formula-
tions. In particular, whereas Cendra et al. [6] consider
constrained variations on the particle dynamics and the
Vlasov distribution expressed in terms of a six-dimensional
virtual displacement vector field w , our new variational
principle considers constrained variations of the Vlasov
distribution on eight-dimensional extended phase space
expressed in terms of the canonical Poisson bracket and
a single scalar field dS which generates a virtual dis-
placement Za ! Za 1 dZa in extended phase space, with
dZa � �Za, dS �Z .

The new variational principle for the Vlasov-Maxwell
equations is written in terms of the following action func-
tional:
A�F , Am� �
Z

d8Z F �Z� �w 2 H�x, p, t�� 1
Z

d4x
1

16p
FmnFnm, (1)
where Z � �x, p; w, t� denotes canonical coordinates on
eight-dimensional extended phase space (here, x, p, and
w denote a particle’s position, canonical momentum, and
energy, respectively), F �Z� denotes the Vlasov distribu-
tion on this extended phase space, and H�x, p, t� denotes
the time-dependent single-particle Hamiltonian on regu-
lar six-dimensional phase space. The second term in (1) is
the standard action functional for the electromagnetic field,
with the field tensor defined in terms of the four-potential
Am � �f, A� as Fmn � ≠mAn 2 ≠nAm; here and hence-
forth, we use the Minkowski space-time metric gmn �
diag�21, 11, 11, 11� and the covariant notation ≠m �
�c21≠t , =�. The variational variables �F , Am� in (1) are
said to be Eulerian since their variations are evaluated at
a fixed point Z in extended phase space for dF �Z� or at
a fixed point x � �ct, x� in four-dimensional space-time
for dAm�x�.
For a charged-particle species with mass m and
charge q, the (nonrelativistic) single-particle Hamilton-
ian is H�z, t� � jp 2 �q�c�A�x, t�j2�2m 1 qf�x, t�,
where z � �x, p� denotes canonical coordinates in six-
dimensional phase space. We note that the dynamics of
a charged particle in eight-dimensional extended phase
space is constrained to take place on the energy surface

w 2 H�z, t� � 0 . (2)

Thus the physical Vlasov distribution F �Z� must be of the
form

F �Z� � d�w 2 H�z, t�� f�z, t� , (3)

where f�z, t� is the time-dependent Vlasov distribution on
six-dimensional phase space. The energy constraint (2) is
easily obtained from the action functional (1) if we con-
sider arbitrary variations in F ; i.e., dA�dF � 0 implies
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(2). The Vlasov equation is obtained by considering the
following constrained variation of F :

dF � �dS ,F �Z � �≠mdS � �DmF � 2 �DmdS � �≠mF � ,
(4)

where we use the covariant notation pm � �2w�c, p�
and Dm � �2c≠w , ≠p�, while dS is the generating scalar
field for an infinitesimal (virtual) displacement Z ! Z 1

dZ in extended phase space, with dZa � �Za, dS �Z

for each eight-dimensional phase-space coordinate
�a � 1, . . . , 8�. This form for dF ensures that all of
the Casimir invariants CF �

R
d8Z F�F � (e.g., entropy)

associated with the Vlasov equation are preserved by
dF since dCF �

R
d8Z �dS , F�F ��Z � 0. We note
that, in analogy with the previous Eulerian variational
principle [6], Eq. (4) can also be written as a phase-space
divergence dF � 2≠a�dZaF �.

The variational principle for the Vlasov-Maxwell equa-
tions can be expressed as

dA �
Z

d4x dL � 0 , (5)

where the four-dimensional Lagrangian density is

L �
1

16p
FmnFnm 1

Z
d4p F �Z� �w 2 H� . (6)

Upon variation, we obtain, from (6),
dL �
Z

d4p dS �F , �w 2 H��Z 1 dAm

∑
1

4p
≠nFnm 2

q
c

Z
d4p F �Z�Dm�w 2 H�

∏

1 ≠n

∑
1

4p
dAmFmn 1

Z
d4p dS �w 2 H�DnF �Z�

∏
. (7)
Since the last term is an exact divergence in four-
dimensional space-time, it does not contribute to the
variational principle (5). For arbitrary Eulerian variations
dS and dAm, we obtain, respectively, the Vlasov equation
in eight-dimensional phase space,

�F , �w 2 H��Z � 0 , (8)

and the Maxwell equations,

≠nFnm �
4pq

c

Z
d4p F �Z�Dm�w 2 H� . (9)

Substituting the physical representation (3) for F into (8),
we obtain the regular Vlasov equation in six-dimensional
phase space:

0 � �f, �H 2 w��Z �
≠f
≠t

1 �f, H�z , (10)

where �, �z denotes the canonical Poisson bracket in six-
dimensional phase space. Substituting Dm�w 2 H� �
2�c, v� � 2ym into (9), where v � �p 2 qA�c��m is
the particle’s velocity, the Maxwell equations (9) become

≠nFnm�x� � 2
4pq

c

Z
d3p ymf�x, p, t� . (11)

The remaining Maxwell equations are expressed in terms
of the identity ≠aFmn 1 ≠mFna 1 ≠nFam � 0. The
derivation of the Vlasov-Maxwell equations (8) and (9)
[or (10) and (11)] from the Eulerian variational principle
(5) is far simpler than previous derivations based on other
variational principles.

We now show how to use this new variational principle
to obtain the energy-momentum conservation law for the
Vlasov-Maxwell equations. For this purpose, we consider
dL � ≠n

∑
1

4p
dAmFmn

1
Z

d4p dS �w 2 H�DnF �Z�
∏

, (12)

obtained from (7) after the dynamical equations (8)
and (9) have been substituted. Until now, the varia-
tions �dS , dAm� have been treated as independent and
arbitrary. Under an infinitesimal space-time transla-
tion x ! x 1 dx, with dx � �cdt, dx�, the expres-
sions for �dS , dAm� and dL are, respectively, dS �
pmdxm, dAm � Fmndxn 2 ≠m�Andxn�, and dL �
2≠m�dxmL �. The first expression implies that dS
is the generating scalar field for an infinitesimal
space-time translation in extended phase space (i.e.,
dxm � �xm, dS �Z). The second expression can be written
as dAmdxm � 2Ldx�Amdxm�, where Ldx is the Lie
derivative along dx. The last expression can be expressed
as dLV � 2Ldx�L V�, where V is the oriented space-
time volume element.

For a constant space-time translation dxm, the Noether
equation (12) becomes the energy-momentum conserva-
tion law for the Vlasov-Maxwell equations

0 � ≠m

∑
gmnL 2

1
4p

�Fm
aFan 2 Fma≠aAn�

1
Z

d4p pn�w 2 H�DmF

∏
. (13)

Here, L � FmnFnm�16p since the Vlasov part in (6) van-
ishes identically when the physical representation (3) is
used for F �Z�. Next, we note that, owing to the anti-
symmetry of Fmn , the third term in (13) can be rewrit-
ten as
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≠m

√
Fma

4p
≠aAn

!
� ≠m

√
An

4p
≠aFam

!

� ≠m

∑
q
c

Z
d4p AnDm�w 2 H�F �Z�

∏
,

(14)

where the Maxwell equations (11) were used to obtain
the last equality in (14). Combining these terms and in-
tegrating by parts in the Vlasov part in (13) yield the
energy-momentum conservation law

≠mTmn � 0 , (15)

where the energy-momentum tensor for the Vlasov-
Maxwell equations is

Tmn �
1

4p

√
gmn

4
FabFba 2 Fm

aFan

!

1
Z

d4p KmnF �Z� , (16)

with Kmn � 2�pn 2 qAn�c�Dm�w 2 H�, i.e., Km0 �
�w 2 qf� �1, v�c� and Kmi � �mcyi , myiv�. Inserting
these expressions into (16) and performing the necessary
w integration over d�w 2 H� yield the standard energy-
momentum conservation law for the Vlasov-Maxwell
equations in terms of the electromagnetic field Fmn and
the Vlasov distribution f�x, p, t� on six-dimensional phase
space.

Having demonstrated that the action functional (1) leads
to the correct variational principle (5) for the Vlasov-
Maxwell equations (8) and (9) and that the energy-
momentum conservation law (15) is properly derived by
the Noether method, we now turn our attention to appli-
cations in the context of Hamiltonian perturbation theory.
In particular, we look at the application of Hamiltonian
Lie-perturbation techniques [9] to asymptotically elimi-
nate fast degrees of freedom in Hamiltonian systems. For
this purpose, we consider the Vlasov part of the action
functional (1):

AV �F � � 2
Z

d8Z F �Z�H �Z� , (17)

where H �Z� � H�z, t� 2 w is the extended phase-
space Hamiltonian. In Hamiltonian Lie-perturbation
theory [9], the asymptotic elimination of a fast degree of
freedom (represented by an angle variable u) proceeds
by a near-identity canonical phase-space transformation
Z ! Z�Z, e� � TeZ, where e denotes a dimensionless
perturbation parameter (i.e., H � H0 1 eH1 1 . . .).
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Here, the near-identity canonical phase-space transforma-
tion is explicitly expressed in terms of generating scalar
fields �S1, S2, . . .�:

Z�Z, e� � Z 1 e�S1, Z�Z

1 e2

µ
�S2, Z�Z 1

1
2

���S1, �S1, Z�Z���Z

∂
1 . . . ,

(18)

where Sn is chosen to remove the fast time scale at
order en in the Hamiltonian dynamics. As a result, an
action variable J (an adiabatic invariant) is constructed as
an asymptotic expansion in powers of e with the following
property: if the perturbation analysis is performed up to
en, then dJ�dt � 2≠H�≠u � O �en11�.

Under the near-identity canonical phase-space transfor-
mation Z ! Z�Z, e� � TeZ, the Vlasov action functional
(17) becomes

AV �F � � 2
Z

d8Z F �Z�H �Z� , (19)

where F �Z� � �T�
e �21F �Z� denotes the new Vlasov

distribution expressed as the pull back of the old Vlasov
distribution F . Note that, by construction, we have
H �Z� � �T�

e �21H �Z� � H 0 1 eH 1 1 e2H 2 1 . . . ,
where H 0 � H0�Z� � H0�Z� 2 w, H 1 � 	H1
, and
H 2 � 	H2
 2 �1�2� 	�S1, H1�Z
, where 	 
 denotes a time
average over the fast time scale. The new Hamiltonian
H in (19) is therefore independent of the fast time scale.
By applying the variational principle (5) with the Vlasov
part given by (19), it is a simple task to derive the reduced
Vlasov equation �F ,H �Z � 0.

Reduced Vlasov formulations play a fundamental role
in understanding the self-consistent nonlinear (turbulent)
dynamics of fusion, space, and astrophysical plasmas. As
an explicit example, we now briefly consider the case
of low-frequency nonlinear gyrokinetic Vlasov-Maxwell
theory; the interested reader will find more details in
Ref. [10]. One important result of the Eulerian varia-
tional formulation of low-frequency nonlinear gyrokinetic
Vlasov-Maxwell theory is the derivation (by the Noether
method) of a local gyrokinetic energy conservation
law ≠tE 1 = ? S � 0, where the gyrokinetic energy
density is

E �x, t� �
Z

d6Z d3�x 2 R�f�Z, t�

3 ���H 2 eq	�T�
gy�21f1gc
���

1
e2

8p
�jE1j

2 1 jB1j
2� , (20)

while the gyrokinetic energy density flux is
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S�x, t� �
Z

d6Z d3�x 2 R�f�Z, t�

3 ��� H �R 2 eq	�T�
gy�21vf1gc
���

1 ef1

µ
J0 2

e

4p
=≠yf1

∂
1

ce2

4p
E1 3 B1 .

(21)

Here, �f1,A1� denote perturbation potentials, E1 �
2=f1 and B1 � = 3 A1 denote the low-frequency
perturbed electric and magnetic fields, Z �
�R, pk, m, u� denotes gyrocenter phase-space coordinates,
H and f�Z, t� denote the nonlinear gyrocenter Hamilton-

ian and Vlasov distribution, respectively, �R � �R, H�gy

denotes gyrocenter velocity (v denotes particle velocity),
and J0 � �c�4p�= 3 B0 denotes the unperturbed current
density.. The gyrocenter pull back �T�

gy�21 and Poisson
bracket � , �gy , as well as other definitions, can be found
in Ref. [11].

In summary, a new Eulerian variational principle for
the Vlasov-Maxwell equations is presented. Based on
this Eulerian principle, the variational formulation of
the Vlasov-Maxwell equations is simpler than previous
formulations based on Lagrangian, mixed Lagrangian-
Eulerian, or Eulerian principles. A great advantage of this
new variational principle is how efficiently the Eulerian
variational principles for reduced Vlasov-Maxwell equa-
tions can be obtained. Future applications of this work
includes, for example, the variational formulation of low-
frequency bounce-gyrokinetic Vlasov-Maxwell equa-
tions [12].
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