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Dynamics of a Small Neutrally Buoyant Sphere in a Fluid and Targeting in Hamiltonian Systems
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We show that, even in the most favorable case, the motion of a small spherical tracer suspended in
a fluid of the same density may differ from the corresponding motion of an ideal passive particle. We
demonstrate furthermore how its dynamics may be applied to target trajectories in Hamiltonian systems.

PACS numbers: 47.52.+ j, 05.45.Gg, 45.20.Jj
We show with the simplest model for the force acting
on a small rigid neutrally buoyant spherical tracer particle
in an incompressible two-dimensional fluid flow that tracer
trajectories separate from fluid trajectories in those regions
where the flow has hyperbolic stagnation points. A tracer
will evolve only on fluid trajectories with Lyapunov expo-
nents bounded by the value of its reciprocal Stokes num-
ber. By making the Stokes number large enough, one can
force a tracer in a flow with chaotic path lines to settle on
either the regular Kolmogorov-Arnol’d-Moser (KAM)-tori
dominated regions or to selectively visit the chaotic regions
with small Lyapunov exponents. These findings should
be of interest for the interpretation of Lagrangian obser-
vations, for example, in oceanography, and in laboratory
fluid experiments that use small neutrally buoyant tracers.
Moreover, since a two-dimensional incompressible flow is
a particular instance of a generically chaotic Hamiltonian
system, our results constitute a tool for targeting trajecto-
ries in Hamiltonian systems.

Our starting point is the equation of motion for a small
rigid spherical tracer in an incompressible fluid,
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where v represents the velocity of the particle, u that of the
fluid, rp the density of the particle, rf , the density of the
fluid it displaces, n, the kinematic viscosity of the fluid,
a, the radius of the particle, and g, gravity. The terms on
the right represent, respectively, the force exerted by the
undisturbed flow on the particle, buoyancy, Stokes drag,
the added mass, and the Basset-Boussinesq history force
[1,2]. The terms in a2=2u are the Faxén corrections [3].
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The equation is as given by Maxey and Riley [4], except for
the added mass term, whose correct form was first derived
by Taylor [5], as was pointed out by Auton et al. [6]. The
derivative Du�Dt is along the path of a fluid element
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1 �u ? =�u , (2)

whereas the derivative du�dt is taken along the trajectory
of the particle

du
dt

�
≠u
≠t

1 �v ? =�u . (3)

Equation (1) is valid where the particle radius and its
Reynolds number are small, as are the velocity gradients
around it, and the initial velocities of the particle and the
fluid are equal. An excellent review of the history and
physics of this problem is provided by Michaelides [7].

We shall simplify Eq. (1) even further with the aim of
discovering whether in the most favorable case a tracer par-
ticle may always be faithful to a flow trajectory. With this
in mind, we set rp � rf , so that the tracer be neutrally
buoyant. At the same time we assume that it be suffi-
ciently small so that the Faxén corrections be negligible.
Furthermore we exclude the Basset-Boussinesq term, since
our approach—in which we follow Einstein and others
[8–10]—is to obtain a minimal model with which we may
perform a mathematical analysis of the problem. If in this
model there appear differences between particle and flow
trajectories, with the inclusion of further terms these dis-
crepancies will remain or may even be enhanced [11–13].
If we rescale space, time, and velocity by scale factors L,
T � L�U, and U, we arrive at the expression
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where St is the particle Stokes number St � 2a2U�
�9nL� � �2�9� �a�L�2Ref , Ref being the fluid Reynolds
number. The assumptions involved in deriving Eq. (1)
require that St ø 1.

In the past it has been assumed that sufficiently small
neutrally buoyant particles have trivial dynamics [10,11],
and the mathematical argument used to back this up is
© 2000 The American Physical Society



VOLUME 84, NUMBER 25 P H Y S I C A L R E V I E W L E T T E R S 19 JUNE 2000
that if we make the approximation Du�Dt � du�dt, the
problem becomes very simple:

d
dt

�v 2 u� � 2
2
3

St21�v 2 u� . (5)

Thence v 2 u � �v0 2 u0� exp�2 2
3 St21t�, from which

we infer that even if we release the particle with a different
initial velocity v0 to that of the fluid u0, after a transient
phase the particle velocity will match the fluid velocity,
v � u, meaning that following this argument, a neutrally
buoyant particle should be an ideal tracer. Although
from the foregoing it would seem that neutrally buoyant
particles represent a trivial limit to Eq. (1), this would
be without taking into account that in a correct approach
to the problem Du�Dt fi du�dt. If we substitute the
expressions for these derivatives given in Eqs. (2) and (3)
into Eq. (4), we obtain
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We may then write A � v 2 u, whence
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where J is the Jacobian matrix—we shall now concentrate
on two-dimensional flows u � �ux , uy�—
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. (8)

If we diagonalize the matrix we obtain
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so if Re�l� .
2
3 St21, AD may grow exponentially. Now

l satisfies det� J 2 lI� � 0, so l2 2 trJ 1 detJ � 0.
Since the flow is incompressible, ≠xux 1 ≠yuy � trJ �
0, thence 2l2 � detJ. Given squared vorticity v2 �
�≠xuy 2 ≠yux�2, and squared strain s2 � s2

1 1 s2
2, where

the normal component is s1 � ≠xux 2 ≠yuy and the shear
component is s2 � ≠yux 1 ≠xuy , we may write

Q � l2 � 2detJ � �s2 2 v2��4 , (10)

where Q is the Okubo-Weiss parameter [14,15]. If Q . 0,
l2 . 0, and l is real, so deformation dominates, as around
hyperbolic points, whereas if Q , 0, l2 , 0, and l is
imaginary, so rotation dominates, as near elliptic points.
Equation (7) together with dx�dt � A 1 u defines a dis-
sipative dynamical system

dj�dt � F�j � (11)

with constant divergence = ? F � 2
4
3 St21 in the four-

dimensional phase space j � �x, y, Ax , Ay�, so that while
small values of St allow for large values of the divergence,
large values of St force the divergence to be small. The
Stokes number is the relaxation time of the particle back
onto the fluid trajectories compared to the time scale of the
flow—with larger St, the particle has more independence
from the fluid flow. From Eq. (9), about areas of the flow
near to hyperbolic stagnation points with Q .

4
9 St22, par-

ticle and flow trajectories separate exponentially.
To illustrate the effects of St and Q on the dynamics

of a neutrally buoyant particle, let us consider the simple
incompressible two-dimensional model flow defined by
the stream function

c�x, y, t� � A cos�x 1 B sinvt� cosy . (12)

The equations of motion for an element of the fluid will
then be �x � ≠yc , and �y � 2≠xc . c has the role of a
Hamiltonian for the dynamics of such an element, with
x and y playing the parts of the conjugate coordinate
and momentum pair. Let us first consider the simplest
case where the time dependence is suppressed, by setting
B � 0. Thence c should be a constant of motion, which
implies that real fluid elements follow trajectories that are
level curves of c . Such level curves are depicted in Fig. 1a,
which also shows contours of Q. The high values of Q
are around the hyperbolic points, while negative Q coin-
cides with the centers of vortices—elliptic points—in the
flow. Figure 1b shows the trajectory of a neutrally buoyant
particle starting from a point on a fluid trajectory within
the central vortex, with an inappreciable velocity mismatch
with the flow. This mismatch is amplified in the vicinity

FIG. 1. (a) Fluid trajectories (thick lines) and magnitude of
Q (background shading: lighter is higher Q) for the time-
independent model Eq. (12) with A � 100 and B � 0. The
flow is on a torus. (b) Separation of a neutrally buoyant par-
ticle trajectory (solid line) with Stokes number St � 0.2 from
the flow (dashed line) in regions of high Q allows the particle
to wander between cells. (c) After a complicated excursion, a
particle eventually settles in a zone of low Q. (d) The velocity
difference yx 2 ux between the particle and the flow against
time for case (c).
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of the hyperbolic stagnation points where Q is larger than
4
9 St22 to the extent that the particle leaves the central vor-
tex for one of its neighbors, a trip that is not allowed to
a fluid parcel. In the end a particle settles on a trajectory,
proper for a fluid parcel, that does not visit regions of high
Q. While this effect is already seen in Fig. 1b, it is more
dramatically pictured in the trajectory shown in Fig. 1c, in
which the particle performs a long and complicated excur-
sion wandering between different vortices before it settles
in a region of low Q of one of them. To illustrate the di-
vergence of particle and fluid trajectories, and the fact that
particle and fluid finally arrive at an accord, in Fig. 1d we
display the difference between the particle velocity and the
fluid velocity at the site of the particle against time for the
case of Fig. 1c. This difference is initially inappreciable,
and it converges to zero at long times, but during the inter-
val in which the excursion takes place it fluctuates wildly.

Even more interesting is the case of time-dependent
flow: B fi 0 in our model. As in a typical Hamiltonian
system, associated with the original hyperbolic stagnation
points, there are regions of the phase space, which is here
real space, dominated by chaotic trajectories. An individ-
ual trajectory of this kind, stroboscopically sampled at the
frequency of the flow, is reproduced in Fig. 2a. Such a
trajectory visits a large region of the space, which includes
the original hyperbolic stagnation points and their vicini-
ties where Q is large. Excluded from the reach of such
a chaotic trajectory remain areas where the dynamics is
regular; the so-called KAM tori. In our model these lie in
the regions where Q ,

4
9 St22. Now a neutrally buoyant

FIG. 2. Poincaré sections of trajectories in the time-dependent
flow of Eq. (12) with A � 250, B � 0.3, and v � 1.0. (a) A
chaotic fluid trajectory. (b) The motion of a neutrally buoy-
ant particle with Stokes number St � 0.2 in the flow. (c) The
velocity difference yx 2 ux between the particle and the flow
against time.
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particle that tries to follow a chaotic flow path line will
eventually reach the highly hyperbolic regions of the flow.
This makes likely its separation and departure from such
a path line, in search of another path line to which to con-
verge. However, convergence will be achieved only if the
path line never crosses areas of high Q. Figures 2b and 2c
demonstrate this phenomenon: a particle was released in
the chaotic zone with an inappreciable velocity mismatch.
The particle followed the flow, until, coming upon a re-
gion of sufficiently high Q, it was thrown out of that flow
path line onto a long excursion that finally ended up in a
regular region of the flow on a KAM torus. The regular
regions of the flow then constitute attractors of the dissipa-
tive dynamical system Eq. (11) that describes the behavior
of a neutrally buoyant particle. The chaotic trajectories in
a Hamiltonian system are characterized by positive Lya-
punov exponents. The Lyapunov exponents are an aver-
age along the trajectory of the local rate of convergence
or divergence. Such a rate is measured by the quantity l.
Hence, for a trajectory to be chaotic, it is a necessary con-
dition that it visit regions of positive Q: an upper bound
to Q is an upper bound to the Lyapunov exponent.

We have considered the implications of these results for
two-dimensional turbulent flows, in which Q defines three
regions: in the vortex centers it is strongly negative; in
the circulation cells that surround them, strongly positive,
while in the background between vortices it fluctuates
close to zero [16–20]. We solve the two-dimensional
vorticity equation for an incompressible fluid, ≠tv 1

J�v, c� � Dv , where Dv � 2n=4v represents subgrid-
scale dissipation; see, e.g., McWilliams [21]. We inte-
grate this equation on a doubly periodic domain using a
pseudospectral method with 5122 collocation points and
n � 2.5 3 1027; see Montabone [22] and Provenzale
[20] for details. As a result of the dynamics, an initially
uniform distribution of small neutrally buoyant particles
evolves in time towards an asymptotic distribution con-
centrated in the inner part of vortices where Q , 0, and
with voids in the areas crossed by fluid trajectories that
visit regions where Q .

4
9 St22, as we illustrate in Fig. 3.

This has important consequences for the design of both

FIG. 3. Small neutrally buoyant tracer particles with Stokes
number St � 0.2 collect in the centers of vortices in a two-
dimensional turbulent flow simulation. (a) Q field at time t � 1
(lighter shading is higher Q), (b) distribution at time t � 1
of particles that were uniformly distributed in the flow at
time t � 0.
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FIG. 4. (a) A particle in a hyperfluid defined by the Hénon-
Heiles Hamiltonian finds a KAM torus (arrowed) in the flow.
(b) The velocity difference Ax � yx 2 ux between the particle
and the flow against time. (c) The Hénon-Heiles energy E
against time.

fluid experiments using neutrally buoyant tracer particles
and Lagrangian drifters in geophysical flows.

Now let us consider the following problem in the
realm of Hamiltonian dynamics: given a generic chaotic
Hamiltonian H� p1, . . . , pn, q1, . . . , qn�, we might like to
find orbits with Lyapunov exponents with a given bound.
In particular, we may be interested in locating small KAM
tori in a chaotic sea. Inspired by the above results, we may
follow the dynamics of a small neutrally buoyant hyper-
sphere in a 2N-dimensional hyperfluid. By this, we mean
a particle that follows a simplified Maxey-Riley equation,
Eq. (4), extended to 2N dimensions, which leads to a
generalization of Eq. (11), dAD

dt � M ? AD , with elements
Mij � di,j��21�i21l��i11��2� 2

2
3 St21�, where �?� in the

subscript denotes the integer part, replacing Eq. (9). Thus
the Stokes number retains the same control over the
Lyapunov exponents as in two dimensions. The quantity
A may be viewed as the control signal: it vanishes when
the desired trajectory is reached. In this light, the dynam-
ics of a neutrally buoyant particle as demonstrated above
may be thought of as a tool for targeting in Hamiltonian
systems.

In Fig. 4 we illustrate our targeting mechanism with
the Hénon-Heiles Hamiltonian H � 1�2�x2 1 y2 1

p2
x 1 p2

y � 1 x2y 2 y3�3. Figure 4a shows with a
Poincaré section how a particle released into a Hénon-
Heiles flow ends up on a KAM torus. In Fig. 4b we
plot one component of the velocity difference between
particle and flow; it displays two episodes of particle-
flow separation before the particle settles on a KAM
torus. Since it is not obliged to conserve the Hénon-Heiles
energy, the energy at which the particle finally settles
into the Hamiltonian flow is a priori undefined; Fig. 4c
shows a series of plateaus punctuated by rapid energy
jumps correlated with the separations. If one is interested
in finding a KAM torus at a given energy, this constraint
should be imposed on the dynamics of the particle.
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