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Dispersion-Induced Dynamical Transition in Parametric Solitary Waves
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We investigate the influence of dispersion on parametric solitary waves. We show that dispersion is
responsible for a transition towards a new type of dynamical solitary wave characterized by the pres-
ence of traveling phase defect arrays within their envelopes. The transition is described analytically
through an original extension of the Kolmogorov-Petrovskii-Piskunov approach to front propagation into
unstable states.
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Parametric wave mixing processes play an important
role in many physical systems. They generally take
place in weakly nonlinear media characterized by either
quadratic or cubic nonlinearities and are thus encountered
in such diverse fields as plasma physics, fluid dynamics,
and nonlinear optics. The development of analytical tools
for solving the governing equations of these processes
has led to the discovery of parametric solitary waves
[1–5]. These solitary waves consist of steady-state field
envelopes resulting from a balance between the energy
exchanges due to the parametric interaction and the group
velocity difference between the interacting waves.

Apart from the group velocity difference, dispersion ef-
fects on the interacting waves has been systematically ig-
nored in previous theoretical studies of parametric solitary
waves. We show in the present Letter that this system-
atic omission is not valid and that even very weak dis-
persion can drastically alter the parametric solitary waves
dynamics. In particular, we show that dispersion induces a
dynamical transition of the parametric solitary waves that
results in the formation of moving periodic patterns across
their field envelopes.

The periodic patterns consist of arrays of phase defects
whose amplitude profiles result from a balance between
dispersion and nonlinearity in a way similar to what hap-
pens in symbiotic quadratic solitary waves encountered in
nonlinear optics [6,7]. The symbiotic solitary waves con-
sist of another type of nonlinear waves sustained by a para-
metric interaction. They result from a balance between
dispersion and nonlinearity in the absence of net energy
exchange between the interacting waves and thus do not re-
quire walk-off, unlike parametric solitary waves. However,
symbiotic solitary waves were shown to persist in the pres-
ence of walk-off leading to the so-called walking solitons
[8]. Both bright [6] and dark [7] optical symbiotic solitary
waves have been predicted theoretically. The new class
of solitary wave that results from the dynamical transition
can therefore be viewed as exhibiting a hybrid paramet-
ric and symbiotic nature: the envelope resulting from net
parametric energy exchanges and walk-off is modulated by
a walking periodic array of symbiotic dark solitons result-
ing from a balance between dispersion and nonlinearity.
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We present the new dynamical solitary wave in the con-
text of nonlinear optics. The dynamical transition is de-
scribed analytically from an original extension of the
Kolmogorov-Petrovskii-Piskunov (KPP) conjecture [9].
The main idea behind our approach is to treat the solitary
wave dynamics as a problem of front propagation into un-
stable states as described by the so-called marginal stabil-
ity theory recently developed in various contexts [10,11].

For concreteness, we study the degenerate phase-
matched three-wave parametric interaction that couples a
fundamental wave and its second harmonic in a quadratic
nonlinear optical crystal. The slowly varying amplitude
envelopes u1 and u2 of the signal and pump waves of
frequencies v1 and v2 � 2v1, respectively, are ruled by
the following dimensionless equations
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where x and t are, respectively, the longitudinal space
coordinate and the time in a reference frame traveling
at the average velocity �y1 1 y2��2, where yi are the
velocities of the signal and pump waves. We consider a
configuration in which the amplitude of the pump wave is
kept constant at the crystal input face and we normalize
the problem with respect to this amplitude, for instance, e0
in real units. The variables can be recovered in real units
through the transformations ui ! uie0, t ! t��s1e0�,
ai ! mi�s1e0�, and x ! xd��s1e0�, where d �
�y2 2 y1��2, ai are the damping rates representing the
effects of crystal absorption at both frequencies, and si is
the parametric coupling constant si � djyijvi��cni�, ni

and d being the refractive index ni � n�vi� and the effec-
tive nonlinear susceptibility, respectively. The nonlinear
coefficient in Eq. (1b) is the ratio r � s2�s1. The effects
of dispersion are represented by the second derivatives
with respect to the spatial variable x so that the dispersion
parameters are given in terms of real unit parameters
by bi � jyij
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being the wave vector modulus, k � n�v�v�c. For sim-
plicity, we assume in the following that b � b2 � b1,
r � 2 and y1 , y2. These assumptions do not affect the
generality of our results.

In the absence of dispersion (b � 0), the three-wave in-
teraction model has been extensively studied in the litera-
ture. In particular, for the conservative case m1 � m2 � 0,
analytical solitary-wave solutions have been derived in the
form of a sech-shaped envelope for the signal wave and a
tanh-shaped envelope for the pump wave [1]. This solution
has been generalized to the dissipative case under the as-
sumption that the pump loss m2 is negligible with respect
to the signal loss m1 so that one can set m2 � 0 in Eq. (1)
[2,3]. We consider here this situation for which a solitary-
wave solution always exists provided that m1 , 1.

Our scope is to study the influence of dispersion on
the parametric solitary wave. To this end, we numerically
solve Eq. (1) with b fi 0 and with an initial sech-shaped
envelope for the signal. Our results are illustrated in Fig. 1
for the initial condition u1�x, t � 0� � 0.1 sech�q0x� with
q0 � 70, u2�x, t � 0� � 1, and a damping m1 � 0.6. The
amplitude envelopes are shown in the reference frame trav-
eling at the signal group velocity defined by z � x 1

t, t � t. The case of Figs. 1(a) and 1(b) corresponds
to a small value of the dispersion parameter, b � 2 3

1025. After some transients, the interacting fields self-
structurate, giving rise to the usual parametric solitary
wave (Fig. 1b) where the signal loss m1 is compensated
by the incoming pump. The expected envelope reshap-
ing induced by the dispersion is almost invisible. One
would be tempted to explain this merely by the fact that a
small value of b corresponds to a situation where walk-off
effects predominate over dispersion. However, the numeri-
cal example of Figs. 1(c) and 1(d) reveals quite remark-
ably that this usual criterion for neglecting dispersion does

FIG. 1. Evolution of the envelopes u1,2 in the reference frame
of the signal wave (amplitudes are given in units of e0, m2 � 0).
(a,b) Parametric solitary wave generation from t � 0 to t �
90; (c) dynamical solitary wave generation, transient at t � 60;
(d) density plot showing the overall evolution.
not hold. Indeed, Figs. 1(c) and 1(d) show the case of
a slightly larger dispersion parameter, b � 2.5 3 1025,
with the same initial conditions as in Fig. 1(a). We see
that dispersion is responsible for a transition characterized
by the appearance of a dynamical periodic pattern in the
solitary-wave envelope. A detailed analysis shows that the
pattern is generated from the drift of p-phase defects that
appear periodically in the leading front of the signal pulse.
This is illustrated in Fig. 2 which shows the phase profile
of the signal wave. The drift of the phase defects can be
easily explained physically from the fact that they consti-
tute symbiotic solitary waves of the dark type that propa-
gate approximately at the group velocity of the signal wave
that is weaker than the velocity of the solitary wave that
is superluminous [2]. Note that the phase defects have not
been observed in previous studies of dispersion effects in
parametric solitary waves [2d,4] because the nondegener-
ate configuration considered in those works prevents them
from appearing due to the inherent group velocity differ-
ence between the signal and idler fields.

This mechanism of pattern formation through phase al-
ternation is similar to that occurring in bistable systems de-
scribed by a generalized Fisher-Kolmogorov equation [11]
as well as in the optical parametric oscillator [12]. In those
systems, however, the fronts propagate between two homo-
geneous states, while here the signal amplitude undergoes
a continuous evolution induced by the energy transfer with
the pump, which is the reason why the overall shape of the
resulting dynamical solitary wave is reminiscent of the dis-
persionless solitary wave.

This brief discussion on the origin of the pattern forming
transition in dispersive parametric solitary waves suggests
the application of the KPP approach. The KPP approach
has already been successfully applied to the characteriza-
tion of optical solitary waves associated with stimulated
Brillouin scattering [3] and three-wave parametric interac-
tions [4]. We generalize here the approach to include the
description of the dispersion-induced dynamical transition.
The method consists in describing the properties of a front
propagating into an unstable state from a linear analysis of

FIG. 2. Phase (solid line) and amplitude (dashed line) of the
signal component of the dynamical solitary wave for the parame-
ters of Fig. 1 (u1 � ju1jeif1 ).
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the leading edge of the front profile. We therefore start our
analysis from the undepleted pump regime for which we
can linearize Eq. (1) around the trivial unstable solution
u1�x, t� � 0, u2�x, t� � 1. Assuming a signal wave of the
form u1�x, t� � eu1 exp�gt 1 iqx�, the linearized Eq. (1)
provides the following dispersion relation

g�q� � iq 2 m1 1

q
1 2 b2q4 , (2)

where we keep only the positive sign of the square root
corresponding to a potentially unstable root Re�g� . 0.
The general solution to the linearized Eq. (1) in a reference
frame (j � x 1 Vt, t � t) traveling at the velocity of the
solitary wave V has the form

u1�j, t� �
Z 1`

2`

eu1�q� exp��g�q� 2 iqV �t� exp�iqj� dq ,

(3)

where eu1�q� is the Fourier transform of the initial signal
field u1�j, t � 0�. In the spirit of the KPP approach, this
field can be reduced to the exponential leading front of
the sech-shaped solitary wave under study, u1�j, t � 0� ~

exp�q0j�. The function eu1�q� then possesses a pole on
the imaginary axis in q � 2iq0. On the other hand, the
function f�q� � g�q� 2 iqV has a saddle point qs defined
through the relation

≠g�q�
≠q

Ç
qs

� iV . (4)

The KPP procedure presented below reveals that this
saddle point is responsible for a velocity selection of
the solitary wave. Therefore, for the sake of simplicity
and without loss of rigor, we can from now consider the
saddle point qs at this particular selected velocity V � V �

given in Eq. (9). One finds, in a first order approxi-
mation in terms of bq2, qs � v 2 is, where s �
�1 2 m1�1�4��121�4jbj1�2� and v �

p
3s.

To calculate the integral Eq. (3), we continue the inte-
grand over the complex q plane and apply the Cauchy theo-
rem according to which the integration can be performed
along any contour C different from the real axis, provided
that the integrand is analytic in the domain D bounded by
this new contour and the real axis. In particular, we can
calculate the integral on a contour C that goes through the
saddle point qs, as depicted in Fig. 3, so that the result can
be provided by the steepest descent method. Note that,
due to the presence of the square root in g, the integrand
exhibits four branch cuts that can always be chosen so that
they do not cross the contour C since the lower branch
point q � 2i�

p
jbj is always below the saddle point qs,

i.e., 1�
p
jbj . s. However, when the dispersion jbj is so

small that s . q0, the contour has to go around the pole
and both the saddle point and the pole contribute to the
integral that can thus be written as

u1�j, t� ~ Ipol 1 Isad , (5)

where Ipol is given by the residue
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FIG. 3. Contour C in the complex q plane.

Ipol ~ exp� f�q � 2iq0�t� exp�q0j� , (6)

while Isad is calculated by the steepest descent method that
yields

Isad ~ eu1�qs� exp� f�qs�t� exp��s 1 iv�j� . (7)

The long term behavior of the solution will then be domi-
nated by the pole or the saddle depending on the values of
Re� f�q�� in q � 2iq0 and qs. The pole dominates when
Re� f�q � 2iq0�� . Re� f�q � qs��, namely, when

jbj , bt �
33�2

25

p
1 2 m1

q2
0

. (8)

For the numerical example of Fig. 1, one finds bt � 2.1 3

1025. If b is smaller than the threshold value bt , the pole
dominates and one finds the standard result of the KPP
approach to front propagation problems according to which
the system exhibits a one-parameter family of dispersive
parametric solitary waves whose velocities are determined
by the initial leading front slope q0 [1–3]. These are the
solutions illustrated in Figs. 1(a) and 1(b).

The problem of interest here is to investigate what hap-
pens when the dispersion increases above the threshold
value bt as in Figs. 1(c) and 1(d). In that case, the sad-
dle point contribution becomes dominant and Eq. (7) indi-
cates that there exists a velocity V for which the solution
neither grows nor decays; i.e., Re� f�q � qs�� � 0. This
stationarity condition fixes the solitary wave velocity to a
particular value V � independent of the initial condition,

V � � 1 1
25�2

33�4 jbj1�2�1 2 m1�3�4. (9)

Because the dominating saddle point is a complex num-
ber qs � v 2 is, Eq. (7) describes an exponential front
of slope s accompanied by a periodic modulation respon-
sible for the generation of a periodic array of phase defects
in the signal envelope. By assuming the conservation of
the flux of phase defects when passing from the linear to
the nonlinear stage of their evolution within the envelope
[11], we can derive the period of the array l � p�V � 2

1���Im�g�� 2 vV�� � p25�2b1�2��35�4�1 2 m1�1�4�.
All the theoretical predictions that characterize the dy-

namical transition, i.e., the dispersion threshold bt , the
selected velocity V �, the front slope s, and the array pe-
riod l, were found to be in excellent agreement with the
numerical simulations. Note that the nature of the present
dynamical transition is fundamentally different from that
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reported in Ref. [11]. Indeed, in that previous work the
dynamical transition is due to the emergence of the saddle
point, while it results here from a competition between a
pole and a permanent saddle point.

When dispersion becomes so large that s , q0, i.e.,
when jbj . 16bt�9, the pole no longer contributes to the
integral and the solitary wave keeps unconditionally its
dynamical nature. Similarly, if the initial condition does
not include an exponential front for the signal wave, the
pole q0 no longer exists and the saddle point is isolated
in the above analysis. Consequently, no competition can
occur and the dynamical solitary waves are uncondition-
ally formed. Accordingly, we have verified numerically
the generation of dynamical parametric solitary waves, at
arbitrarily small values of b, for Gaussian signal envelopes
as initial conditions. Our results reveal that the dynamical
solitary wave constitutes a robust attractor of the system,
which should facilitate its experimental observation. Note
that, quite remarkably, since the period of the phase defect
array l is proportional to b1�2, the influence of dispersion
on parametric solitary waves appears to be more effective
for lower dispersion values.

For larger values of b, we have observed a second tran-
sition induced by a modulational instability whose study
is beyond the scope of the present Letter. Modulational
instability is indeed unavoidable when dispersion domi-
nates over walk-off effects [5]. In order to avoid the onset
of modulational instability in practice, we suggest a quasi-
phase-matched backward configuration [13] for the experi-
mental observation of the dynamical parametric solitary
waves. In the backward configuration we have y2 . 0
and y1 , 0 so that walk-off effects are large enough to
dominate the natural dispersion of optical quadratic mate-
rials. In this situation, the simulation reported in Figs. 1(c)
and 1(d) corresponds to a 230 fs sech-shaped signal pulse
propagating in a 6 cm long quasi-phase-matched crystal
with an effective nonlinearity d � 35 pm�V, a loss co-
efficient a1 � 9.4 cm21 and a typical dispersion k00 �
1.7 ps2�m. The corresponding intensity of the counter-
propagating continuous pump is I � 200 MW�cm2. The
simulation of Figs. 1(c) and 1(d) reveals that, thanks to the
backward configuration, the dynamical solitary wave can,
in principle, be generated in a single pass configuration.

In summary, by means of an original extension of the
KPP approach to front propagation into unstable states, we
described analytically the dynamical transition that affects
parametric solitary waves owing to the effects of dispersion
on their constituent interacting waves. The transition re-
sults from a competition between the pole associated with
the exponential front of the solitary wave and the saddle
point introduced by dispersion into the linearized problem.
The transition occurs between a one-parameter family of
parametric solitary waves and a velocity selected hybrid
solitary wave whose envelope is characterized by a walk-
ing periodic array of phase defects analogous to dark topo-
logical solitons. Although the theory has been developed
in the context of nonlinear optics for the particular case of
a degenerate three-wave interaction, the great generality of
our mathematical treatment suggests that the phenomenon
described here is ubiquitous in physics. We can reasonably
expect, in the near future, the experimental observation of
the dynamical solitary wave in the context of nonlinear
optics, thanks to the recent progress made on quasi-phase-
matched quadratic materials.
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