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Using Slow Light to Enhance Acousto-optical Effects: Application to Squeezed Light
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We propose a technique for achieving phase matching in Brillouin scattering in a dielectric fiber doped
by three-level L-type ions. This can lead to a dramatic increase of efficiency of ponderomotive nonlinear
interaction between the electromagnetic waves and holds promise for applications in quantum optics such
as squeezing and quantum nondemolition measurements.

PACS numbers: 42.50.Ar, 42.65.Es, 42.81.– i
Mutual phase modulation of two electromagnetic (EM)
waves plays an important role in nonlinear and quantum
optics with applications ranging from optical Kerr shut-
ters [1] to quantum nondemolition (QND) measurements
[2]. To achieve the desired coupling between EM waves
a large nonlinear susceptibility with small losses is neces-
sary. Several examples of atomic media with such proper-
ties have been proposed and demonstrated [3,4].

There has recently been considerable interest in the me-
chanical effects of light on macroscopic objects. In such
considerations the radiation pressure coupling of the light
fields to a freely suspended mirror introduces a nonlin-
earity which gives rise to a bistability [5] and squeezing
of light [6] (Fig. 1). The magnitude of the ponderomotive
nonlinearity increases inversely with the mass of the sus-
pended mirror. However, it is difficult to operate experi-
mentally with small mass mirrors [7]. From this point of
view, an optical fiber is an appropriate candidate for study-
ing ponderomotive nonlinear effects because of low optical
and mechanical losses accompanied by a small fiber mass.

In fibers the scattering of light by an acoustic wave,
usually referred to as Brillouin scattering, arises because
the refractive index of a medium depends on its density
(strain). The acoustic wave modulates the refractive index
and may scatter the light wave. This is similar to the
ponderomotive nonlinearity mentioned above.

Stimulated backward Brillouin scattering (SBBS) and
guided acoustic wave Brillouin scattering (GAWBS) have
been demonstrated in optical fibers. In SBBS, light gen-
erates sound through electrostriction and is scattered by
the acoustic wave [8]. Although SBBS has a relatively
low threshold and narrow linewidth, it is not used much in
quantum optics, because the high frequency acoustic os-
cillations have a low quality factor.

GAWBS [9–11] is enhanced by the long phonon life-
time ts � 20 ms; however, the scattering is essentially
spontaneous. Light is scattered forward by thermal acous-
tic vibrations of the fiber. Phase mismatch between the
0031-9007�00�84(25)�5752(4)$15.00
guided acoustic and electromagnetic waves is the main rea-
son why the high-Q acoustic oscillations cannot be used
for stimulated scattering in usual fibers.

We here show that phase-matched conditions can be
established for a wide range of fiber parameters by taking
advantage of the large linear dispersion associated with
electromagnetically induced transparency (EIT). This
makes it possible to slow the group velocity of a laser
pulse down to the speed of sound in solids [12,13], and,
therefore, to utilize the ponderomotive nonlinearity of the
fiber for new phase modulators, frequency shifters, and
sensors, on the one hand, and for effective quantum wave
mixing, generation of nonclassical states of light, and
QND measurements, on the other.

Let us consider two EM waves copropagating in the fiber
interacting with an acoustic mode of the fiber. The phonon-
photon interaction Hamiltonian is given by

Hint�t� � h̄g
sinDkL

DkL
â1�t�â1

2 �t�b̂1�t� 1 adjoint (1)

where g is a coupling constant, L is the length of the fiber,
â1,2 and b̂ are the annihilation operators of the EM fields

FIG. 1. Amplitude fluctuations of the EM wave Ein falling
on the mirror cause fluctuations of the mirror’s position. This,
in turn, leads to a change of the phase of the reflected wave
Eout. Because usually the velocity of the mirror is small, the
Doppler frequency shift of Eout can be neglected and the EM
wave experiences self-phase modulation without changing its
energy. Therefore, the effect can be described in terms of effec-
tive x �3� nonlinearity.
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and acoustic phonons (we assume that all operators are
slowly varying functions of time and space), k1,2, v1,2 and
kb , vb are the wave vectors and frequencies, and Dk �
k1 2 k2 2 kb . We note that conservation of energy re-
quires v1 2 v2 � vb . However, in general, we do not
have k1�v1� 2 k2�v2� � kb�vb� because of dispersion ef-
fects. Since vb ø v1,2, we may write

k1 2 k2 �
v1n�v1�

c
2

v2n�v2�
c

�
v1 2 v2

c
≠�vn�v��

≠v
�

v1 2 v2

Vg
,

and kb � vb�Vs, where Vg � c��≠�vn�v���≠v� and Vs

are the EM group and the sound velocities, respectively. In
the following, we represent the EM field as a sum of large
classical expectation and small fluctuation parts â1,2 �
	a1,2
 1 dâ1,2 (	a1,2
 ¿ dâ1,2, and 	a1,2
 are real values).

It is easy to see from Eq. (1) that, even in the most in-
teresting resonant case D � v1 2 v2 2 vb � 0, we still
have phase mismatch DkL � vb�1�Vg 2 1�Vs�L ¿ 1,
and the interaction vanishes with increasing L if the light
group velocity Vg is different from the phase sound veloc-
ity Vs. As noted earlier, the group velocity is relevant here
because it characterizes the difference in phase velocities
for light waves of different frequencies. It is this phase ve-
locity difference that enters the phase matching condition.
If the condition vb � dva is satisfied and the condition
Vg � Vs is met, then phase matching is achieved.

To slow the group velocity of light to the speed of sound
we propose to use a medium, consisting of a host doped by
L atoms or ions (Fig. 2) (for example, Eu31, Er31, etc.).
This could be a doped silica glass or crystal fiber (see,
for example, Fig. 3 [14]). The fields are nearly resonant
with the corresponding atomic transitions and include a
strong driving field with frequency vd and Rabi-frequency
V, and two sufficiently weak fields with carrier frequen-
cies v1 and v2 and Rabi-frequencies a1 and a2 (a1,2 �
�ab	a1,2


p
4pvab�h̄V , where V is the total volume of

the mode in the fiber, and �ab is the dipole momentum of
the probe transition). The fields interact via the long-lived

FIG. 2. Probe EM waves a1�z, t� and a2�z, t� and drive EM
wave V�z, t� propagate into a fiber doped by three-level ions.
Appropriate choice of the drive power allows phase matching
between probe waves and a guided acoustic wave, propagating
in the same direction as the EM waves. Effective resonant
interaction between the waves (dva � vb) leads to large nearly
noiseless cross phase modulation between the probe waves.
coherence of the dipole-forbidden transition between the
ground state sublevels jb
 and jc
. Because in doped ma-
terials decay of this ground state coherence (decay rate is
about �103 s21 or more) usually dominates over decay of
spin exchange (decay rate is about �1 s21), we here con-
sider the first type of decay only.

EM wave propagation in the fiber occurs with the ab-
sorption coefficients b1,2 � �k�2�x 00�v1,2�, and the group
velocity Vg � c�ng, ng � 1 1 v�2�≠x 0�≠v�. The pump
power should be large enough to sustain EIT in the sys-
tem (V2 ¿ gbcg and V ¿ a1,2) and large enough band-
width to provide EIT for both fields a1,2 (V2 ¿ vbg). In
the above limits we obtain expressions for the group ve-
locity index and the resonant losses in the form [13]

b1,2 �
3

8p
Nl2 grgbc

jVj2
, (2)

ng1,2 �
3

8p
Nl2 cgr

jVj2
, (3)

where N is the density of dopants, l is the EM wavelength,
gr is the natural linewidth of optical transitions, gbc is the
decay rate of the ground state coherence, and g is the total
linewidth of the transitions.

To meet the phase-matching condition, we use Eq. (3)
to write

Vs � Vg �
8pjVj2

3Nl2gr
. (4)

Noting that Rabi frequency is related to the laser power by

jVj2 �
3l3grPV

8p2h̄cA
, (5)

where Pa1, Pa2, and PV are the powers of the probe and
drive fields, respectively, A is the cross-sectional area of
the fiber, from Eqs. (4) and (5) we derive

PV

A
� NVs

h̄v1

2
. (6)

Once the phase-matching condition has been established
(i.e., Vs � Vg), interaction between the fields [see Eq. (1)]
is sustained through the whole fiber length L.

FIG. 3. Energy-level diagram for CaF2:Sm21 showing an ap-
propriate L configuration for reducing group velocity of the
probe waves a1,2.
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Solving the Hamiltonian equation for the acoustic oscil-
lations (neglecting memory effects) and assuming that the
laser powers are not changing significantly during propa-
gation, we arrive at

â1,2�t� � â1,2�0� exp

µ
g2â1

2,1â2,1

iD 1 gph
2

b1,2c

n
2

bfc

n

∂
t ,

(7)

and where bf and gph describe the losses of EM and
phonon fields, respectively, n is the refractive index of the
host material (for example, silica). The interaction time t
can be replaced by Ln�c when we consider propagation
of the cw EM fields through the fiber with length L.

To estimate the coupling parameter g we note that a
single-mode optical fiber is essentially a long, narrow
cylinder of fused silica, and the light interacts with vi-
brational eigenmodes of the cylinder. As an example, we
consider the radial modes, which are responsible for the
forward scattering of light and derive, using the results and
parameters from [9],

g � j
n3n

2

s
h̄vb

2mV 2
s

, (8)

where the coefficient j, depending on strain-optic proper-
ties of fused silica, is about unity, m is the total mass of
the fiber, and n � v1,2�2p . We assume here that the total
length of the fiber exceeds the wavelength of the acous-
tic wave.

According to Eqs. (5)–(8) the expressions for the cross-
phase modulation Df1 of EM wave a1 due to the pondero-
motive interaction is

Df1 � hxpmPa2L , (9)

hxpm �
n6

8plc
Q

rAV 2
s

gphD

D2 1 g
2
ph

, (10)

where r is the density of the material, hxpm is the cross-
phase modulation coefficient, Q21 � 2gph�vb ; the cor-
responding equation for Df2 is obtained by 2 $ 1.

To show that the ponderomotive nonlinearity can be used
for demonstration of quantum effects (e.g., squeezing of
light), we compare the relaxation rate in the system with
the nonlinear response (the second should be much larger
than the first). Assuming that the losses of the host material
are much less than the resonant losses due to the EM wave
coupling with the dopants and phonons, and considering
Pa1 � Pa2 � Pa , we write the ratio between losses and
nonlinearity in the fiber:

b1,2L 1 bfL

Df1,2
� z

D2 1 g
2
ph

Dgph
, (11)

z �
8rl2gbc

n5h̄NQ
PV

Pa

. (12)

This ratio reaches minimum at the optimal detuning gph �
Dopt. For the parameters, typical for a fiber doped by rare
earth ions (e.g., see Fig. 3) (r � 1.2 g�cm3, l � 1 mm,
5754
n � 1.5, N � 1019 cm23, gbc � 103 s21, gr � 2 3

104 s21, g � 109 s21) the nonlinearity exceeds losses if
Q . 4 3 103�PV�Pa�.

The value of the nonlinearity can be large. For example,
for Q � 5 3 106, Vs � 6 3 105 cm�s, A � 1027 cm2,
we find hxpm � 2�PV�Pa�1�2 cm21 W21, (for silica
hxpm � 3 3 1025 cm21 W21) while total losses are
2.5 103 3 �Pa�PV� times less.

It should be mentioned that the self-phase modulation
is much less than the cross-phase modulation here due to
the resonant feature of the nonlinearity, while in ordinary
fibers they are equal. The total power of the driving field
needed for establishing of the phase-matching condition
is quite reasonable PV � 38 mW, and due to the phase-
matched operation, the ponderomotive nonlinearity of the
fiber holds promise for application in quantum and non-
linear optics.

Let us next demonstrate how the ponderomotive non-
linearity can be used for the generation of squeezed states
of light. In the strong field approximation, Eq. (7) can be
linearized to yield

dâ1,2�L� � dâ1,2�0� 2 i
Lg2n
Dc

	a1
 	a2


3 �dâ2,1�0� 1 dâ
y
2,1�0�� , (13)

where dâ1,2�0� describes the initial variant of the coherent
fields. It follows from Eq. (13) that the sum of the fields,

dâS � dâ1�L� 1 dâ2�L� , (14)

is squeezed if the fields were initially prepared in a coher-
ent state.

We have neglected the losses and associated noises here
because, as it has been discussed above, they can be con-
sidered as small. However, the maximum squeezing is
determined by the total losses in the system

	�dâSeiw 1 dâ
y
Se2iw�2
min � 4

µ
gph

jDj
1

gbcL
Vs

∂
, (15)

where w is the optimal squeezing angle.
The squeezing of the sum of the field operators is gov-

erned by the quantum correlation between the fields. Such
cross-phase modulation has been used in QND measure-
ments [2]. The detection of the quadrature amplitude of
one of the fields allows us to obtain information about the
corresponding quadrature amplitude of the other field with-
out destroying it.

There is another interesting feature of the above. Equa-
tion (7) shows that field a2 can be amplified through the
propagation along the fiber in the case of resonant tun-
ing D � 0 and when a2 , a1. The condition for such an
amplification is z , 2, which is not unreasonable. For pa-
rameters as these the threshold power is Pa1 � 4 mW and
detection of stimulated GAWBS in the fiber is feasible.

Furthermore, it is possible to relax the threshold condi-
tion and to enhance the interaction between EM waves by
decreasing gph and gbc. Another way to increase effective
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gain is using a ring resonator, which allows one to decrease
the effective phonon “mass” while keeping the interaction
length the same. The threshold condition does not depend
on relaxation rates, gr or g. The relaxation rates need only
meet the condition required to maintain the atomic coher-
ence (V2 ¿ gbcg). This allows us to use a variety of
dopants, the best having the smallest gbc. It is interesting
to note, that the acoustic oscillation of the fiber can lead to
modulation of frequency of the transitions of the dopants,
which can result in additional parametric effects.

It should be also mentioned that the intensity and line-
width of the acoustic resonances are affected by the fiber
diameter variations, bulk attenuation of the acoustic wave,
and damping due to the fiber surface. Increasing the fiber
quality yields strong nonlinear interaction between EM
waves resulting from the large resonant ponderomotive
x �3� nonlinearity. Thus, the (usually) undesirable photon-
phonon interaction may be used to advantage establish-
ing a phase-matching condition between the acoustic and
EM waves.

In conclusion, we have demonstrated how ultraslow
light can yield phase matching in optical fibers which al-
lows us to achieve strong coupling between high quality
acoustic waves of the fiber and multifrequency EM fields.
The method is based on doping the fiber by three-level L

atoms or ions which possess steep dispersion with low ab-
sorption close to the point of two-photon resonance. We
predict that the fiber holds promise for an effective wave
mixer and/or amplifier at low temperatures due to the large
ponderomotive nonlinearity associated with acoustic oscil-
lations of the fiber.
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