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We obtain properties of 12C in the ab initio no-core nuclear shell model. The effective Hamilto-
nians are derived microscopically from the realistic CD Bonn and the Argonne V80 nucleon-nucleon
�NN� potentials as a function of the finite harmonic oscillator basis space. Binding energies, excita-
tion spectra, and electromagnetic properties are presented for model spaces up to 5h̄V. The favorable
comparison with available data is a consequence of the underlying NN interaction rather than a phe-
nomenological fit.

PACS numbers: 21.60.Cs, 21.30.Fe, 27.20.+n
While various methods have been developed to solve the
three- and four-nucleon systems with realistic interactions
[1–4], few approaches are suitable for heavier nuclei at this
time. Apart from the coupled cluster method [5] applied
to closed-shell and near-closed-shell nuclei, the Green’s
function Monte Carlo method is the only approach for
which exact solutions of systems with A # 8, interacting
by realistic potentials, have been obtained [4].

For more complex nuclei, treated as systems of nucle-
ons interacting by realistic NN interactions, we apply the
no-core shell model (SM) approach [6–9]. To date, this
ab initio method has been successfully applied to solve
the three-nucleon as well as the four-nucleon bound-state
problem [8,9]. Here, we address a vastly more complex
system, 12C, and present first results for an illustrative set
of observables with two realistic NN interactions.

There are several pressing reasons to investigate 12C in
a way that preserves as much predictive power as pos-
sible. The 12C nucleus plays an important role [10] in
neutrino studies using liquid scintillator detectors. Also,
there has been considerable interest recently in parity-
violating electron scattering from �Jp , T � � �01, 0� tar-
gets, like 12C, to measure the strangeness content of the
nucleon [11,12]. For these and many other reasons, there
have been multi-h̄V SM studies of 12C in the past [13–15].
However, unlike our approach, phenomenological effective
interactions were used.

We start from the two-body Hamiltonian for the
A-nucleon system, which depends on the intrinsic coordi-
nates alone, HA � Trel 1 V , where Trel is the relative
kinetic energy operator and V is the sum of two-body
nuclear and Coulomb interactions, V � VN 1 VC.
There is no phenomenological one-body term. We
neglect many-body interactions at present. To facilitate
our work, we add an A-nucleon harmonic oscillator
(HO) Hamiltonian acting solely on the center-of-mass
(CM), HCM � TCM 1 UCM, where UCM �

1
2AmV2 �R2,

�R � 1
A

PA
i�1 �ri , and m is the nucleon mass. The effect
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of this HO CM Hamiltonian will be subtracted in the
final many-body calculation. The Hamiltonian, with a
pseudodependence on V, can be cast into the form
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Since we solve the many-body problem in a finite HO
model space, the realistic nuclear interaction in (1) will
yield pathological results unless we derive a model-space
dependent effective Hamiltonian. For this purpose, we
adopt approaches presented by Suzuki and Lee [16], Da
Providencia and Shakin [17], and Suzuki and Okamoto
[18], which yield an Hermitian effective Hamiltonian.

According to Da Providencia and Shakin [17], a
unitary transformation of the Hamiltonian HV

A , which
is able to accommodate the short-range two-body cor-
relations, can be introduced by choosing a two-body, in
our case translationally invariant, anti-Hermitian opera-
tor S �

PA
i,j�1 Sij , such that H � e2SHV

A eS . The
transformed Hamiltonian can be expanded in terms of up
to A-body clusters H � H �1� 1 H �2� 1 H �3� 1 . . . ,
where the one-body and two-body pieces are given as
H �1� �

PA
i�1 hi , H �2� �

PA
i,j�1 Ṽij , with

Ṽ12 � e2S12 �h1 1 h2 1 V12�eS12 2 �h1 1 h2� . (2)

The full space is divided into a model or P space and a Q
space, using the projectors P and Q with P 1 Q � 1. It
is then possible to determine the transformation operator
S12 from the decoupling condition

Q2e2S12�h1 1 h2 1 V12�eS12P2 � 0 . (3)

The two-nucleon-state projectors (P2, Q2) follow from the
definitions of the A-nucleon projectors P, Q. This ap-
proach has a solution [18], S12 � arctanh�v 2 vy�, with
the operator v satisfying v � Q2vP2. This is the same
© 2000 The American Physical Society
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operator, which we previously employed [7–9]. It can be
directly obtained from the eigensolutions jk� of h1 1 h2 1

V12 as �aQjvjaP� �
P

k[K �aQ jk� �k̃jaP�, where we de-
note by tilde the inverted matrix of �aP j k�. Here jaP� and
jaQ� are the two-particle model-space and Q-space basis
states, respectively, and K denotes a set of dP eigenstates,
whose properties are reproduced in the model space, with
dP equal to the model-space dimension.

The resulting two-body effective interaction Ṽ12 de-
pends on A, on the HO frequency V, and on Nmax,
the maximum many-body HO excitation energy (above
the lowest configuration) defining the P-space. It fol-
lows that H �1� 1 H �2� 2 HCM is translationally invari-
ant and that Ṽ12 ! V12 for Nmax ! `. A significant
consequence of preserving translational invariance is the
factorization of our wave function into a product of a
CM 3

2 h̄V component times an internal component, which
allows exact correction of any observable for CM ef-
fects. This feature distinguishes our approach from most
phenomenological SM studies that involve multiple HO
shells.

The most significant approximation used in the present
application is the neglect of higher than two-body clusters
in the unitary transformed Hamiltonian expansion. Our
method is not a variational approach so the neglected clus-
ters can contribute either positively or negatively to the
binding energy. Indeed, we find that the character of the
convergence depends on the choice of V [6,8,9]. The
method can be readily generalized in order to include, e.g.,
three-body clusters, and to demand the model-space de-
coupling on the three-body cluster level. Such a general-
ization leads to the derivation of the three-body effective
interaction, which has been successfully applied in our cal-
culations for the A � 4 system [8,9]. We learned that for
an optimal HO frequency the contribution of higher-order
clusters to the binding energy are about 10% in similar
model spaces that we employ here.

To solve for the properties of 12C, we employ the
m-scheme Many-Fermion Dynamics code [19]. Be-
cause of the fast growing matrix dimensions, reaching
6 488 004 at the Nmax � 5 model space, we are re-
stricted to Nmax � 0, 2, 4 for the positive-parity states and
Nmax � 1, 3, 5 for the negative-parity states. Here, we
utilize h̄V � 15 MeV which lies in the range where the
largest model space results are least sensitive to h̄V. Full
details will be reported elsewhere.

We present results for the CD Bonn [20] and the Ar-
gonne V80 [4] NN potentials. Our positive-parity state
results are presented in Table I and in Fig. 1, and the
negative-parity state results are in Table II and Fig. 2.
While the energy of the lowest eigenstate of each parity
increases with increasing model space, the relative level
spacings are less dependent on model-space size. As a
gauge of trends with increasing model-space size, consider
the rms changes in excitation energies of the first seven
excited states of each parity in the CD Bonn case. For
positive-parity states, the rms changes are 1.31 (0.22) MeV
in going from 0 to 2 (2 to 4)h̄V. For negative parity states,
the rms changes are 0.87 (0.20) MeV in going from 1 to
3 (3 to 5)h̄V. The difference between the Nmax � 2�3�
and 4(5) results is significantly smaller than that between
the Nmax � 0�1� and 2(3) results, which is similar to the
convergence trends we saw in lighter systems [6,8,9]. Our
obtained binding energy of about 88 MeV in the 4h̄V

space is expected to decrease with a further model space
enlargement. We estimate, however, that our result should
be within 10% of the exact solution for the two-body
NN potential used. In order to reach the experimental
binding energy, likely a true three-body NN interaction is
neccessary [4].
TABLE I. Experimental and calculated energies, ground-state point-proton rms radii, the 21
1 -state quadrupole moments, as well as

E2 transitions, in e2 fm4, and M1 transitions, in m
2
N , of 12C. A HO frequency h̄V � 15 MeV was employed. The experimental

values are from Refs. [21,22].

12C CD Bonn AV80

Model space · · · 4h̄V 2h̄V 0h̄V 4h̄V 2h̄V 0h̄V

jEgs�010�j �MeV� 92.162 88.518 92.353 104.947 87.675 92.195 104.753
rp �fm� 2.35(2) 2.199 2.228 2.376 2.202 2.228 2.376

Q21 �e fm2� 16�3� 4.533 4.430 4.253 4.536 4.427 4.250

Ex�210� �MeV� 4.439 3.697 3.837 3.734 3.584 3.766 3.699
Ex�110� �MeV� 12.710 14.141 14.525 13.866 14.044 14.549 13.935
Ex�410� �MeV� 14.083 13.355 13.636 12.406 12.848 13.255 12.192
Ex�111� �MeV� 15.110 16.165 16.291 15.290 16.295 16.515 15.488
Ex�211� �MeV� 16.106 17.717 17.945 15.970 17.945 17.823 15.920
Ex�011� �MeV� 17.760 16.618 16.493 14.698 16.205 16.208 14.574

B�E2; 210 ! 010� 7.59(42) 4.625 4.412 4.092 4.612 4.397 4.091
B�M1; 110 ! 010� 0.0145(21) 0.0042 0.0032 0.0013 0.0026 0.0019 0.0008
B�M1; 110 ! 210� 0.0081(14) 0.0017 0.0013 0.0008 0.0013 0.0012 0.0008
B�M1; 111 ! 010� 0.951(20) 0.355 0.280 0.158 0.316 0.252 0.147
B�M1; 111 ! 210� 0.068(9) 0.0002 0.0028 0.0115 0.0023 0.0078 0.0167
B�E2; 211 ! 010� 0.65(13) 0.283 0.015 0.0018 0.104 0.000 0.002
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FIG. 1. Experimental and theoretical positive-parity excitation
spectra of 12C. Results obtained in 4h̄V, 2h̄V, and 0h̄V model
spaces are compared. The effective interaction was derived from
the CD Bonn NN potential in a HO basis with h̄V � 15 MeV.
The experimental values are from Ref. [21].

In general, we obtain a reasonable agreement of the
states dominated by 0h̄V and 1h̄V configurations with
experimental levels. We also observe a general trend of
improvement with increasing model-space size. We ob-
tain a reasonable set of excitation energies for the T � 1
states relative to the lowest T � 0 state of each parity. In
addition, our lowest 01 T � 2 state lies between 27 and
29 MeV, depending on the NN potential and the model
space, in good agreement with the experimental 012 state
at 27.595 MeV. We note that the favorable comparison
with available data is a consequence of the underlying
NN interaction rather than a phenomenological fit. Our
ground-state wave function in the 4h̄V calculation con-
tains 61% of the 0h̄V component. The occupancy of the
0p3�2 level is 5.74 nucleons, while the occupancy of the
5730
0p1�2 level is 1.90 nucleons. From Tables I and II, it
is clear that the excitation energies of the negative-parity
states relative to the positive-parity states decrease rapidly
with the model-space enlargement. Still, even in our
largest spaces the 320 state is more than 5 MeV too high
compared to the experiment.

In order to achieve a more realistic excitation energy a
still larger HO expansion is needed, especially for states
with significant cluster structure. The two- and higher-h̄V

dominated states, such as the 7.65 MeV 010 state that is
known to be a three-alpha cluster resonance [23], are not
seen in the low-lying part of our calculated spectra. In gen-
eral, the convergence rate of the 2h̄V dominated states is
quite different than that of the ground state as we observed
in 4He calculations performed in the present formalism
[8,9]. Also, an optimal HO frequency for the convergence
of the ground state will differ from the optimal frequency
for the 2h̄V states. We investigated the position of the low-
est 2h̄V dominated states and the giant quadrupole reso-
nance (GQR) E2 distribution. Our lowest 2h̄V 01 state
lies at about 40 MeV excitation energy and the GQR E2
strength is fragmented between 43 to 50 MeV in the 2h̄V

calculation. In the 4h̄V model space the excitation en-
ergy of the lowest 2h̄V 01 state drops by 5 MeV to about
35 MeV and similarly the GQR strength position is low-
ered to 37–47 MeV, while the experimental is observed in
the range 18–28 MeV [24].

There is little difference between the results from the
two NN interactions, although the overall agreement with
experiment is slightly better for the CD Bonn potential,
e.g., stronger binding and the T � 1 state ordering.

Our radius and E2 results, based on the bare radius
operator and bare nucleon charges, are smaller than the
experimental values. The underestimation of the rms ra-
dius, the quadrupole moment, and the E2 transitions is
linked with the overestimation of the position of the GQR
strength and suggests that even in the Nmax � 4 space we
still miss significant clustering effects. Clearly, there is
TABLE II. Experimental and calculated negative-parity state energies, the 320-state point-proton rms radii, and quadrupole mo-
ments are shown. The calculated excitation energy of 320 is obtained by comparing its energy in the Nh̄V space with the ground
state in the �N 2 1�h̄V space. A HO frequency h̄V � 15 MeV was employed.

12C CD Bonn AV80

Model space · · · 5h̄V 3h̄V 1h̄V 5h̄V 3h̄V 1h̄V

jE�320�j �MeV� 82.521 72.952 75.331 83.390 72.300 75.360 83.459
rp �fm� 2.309 2.316 2.425 2.310 2.315 2.425

Q32 �e fm2� 27.942 27.596 26.936 27.920 27.575 26.933
E�320� 2 Egs �MeV� 9.641 15.566 17.022 21.557 15.375 16.835 21.294

Ex�320� �MeV� 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Ex�120� �MeV� 1.203 2.093 2.256 1.561 2.112 2.274 1.552
Ex�220� �MeV� 2.187 3.722 4.051 3.582 3.722 4.057 3.567
Ex�420� �MeV� 3.711 4.866 5.084 4.768 4.741 4.993 4.710
Ex�020� �MeV� 7.148 7.062 5.712 7.148 7.156 5.777
Ex�221� �MeV� 6.929 7.671 7.783 7.340 7.949 8.237 7.574
Ex�320� �MeV� 7.877 8.151 6.886 7.651 7.983 6.745
Ex�121� �MeV� 7.589 8.048 7.951 7.042 8.117 8.096 7.184
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FIG. 2. Experimental and theoretical negative-parity spectra of
12C. Results obtained in 5h̄V, 3h̄V, and 1h̄V model spaces are
compared. Other factors are the same as in Fig. 1.

still a need for effective operators, which are calculable
within our theoretical framework. In general, to compute
a two-body correction to a one-body operator in our for-
malism is more involved than the evaluation of the effec-
tive interaction. But, it is easy to study the lowest order
renormalization for a two-body operator depending on the
relative position of two nucleons as, e.g., the point-nucleon
rms radius operator. Then, Oeff �

PA
i,j�1 e2Sij OijeSij .

We computed this term for the point-proton rms radius
operator and found that the renormalization leads to an
increase of the radius and that the size of this increase
drops as the model-space size increases. The rp results
presented in Table I that were obtained without renormal-
ization should be increased due to the renormalization by
about 0.06, 0.02, and 0.01 fm for the Nmax � 0, 2, and
4 model spaces, respectively. This does not imply that
the renormalization of other operators, e.g., the E2 opera-
tor, cannot be substantially higher. Similarly, as observed
in our 3H calculations [9], we anticipate that, in contrast
with the energies, the higher-order corrections will be more
significant and the overall convergence slower for other
observables.

We present these results as a useful description of the
0 and 1h̄V-dominated states of 12C. Our wave functions
along with the one-body and two-body densities may also
be used to predict cross sections for neutrino and muon
reactions with 12C. The trends are encouraging and we
will carry out larger model-space investigations in order to
achieve greater convergence.
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