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Dark Solitons in a One-Dimensional Condensate of Hard Core Bosons
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A mapping theorem leading to exact many-body dynamics of impenetrable bosons in one dimension
reveals dark and gray solitonlike structures in a toroidal trap which is phase imprinted. On long time
scales revivals appear that are beyond the usual mean-field theory.
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Dark and gray solitons are a generic feature of the non-
linear Schrödinger equation with repulsive interactions,
and several calculations of their dynamics based on the
mean-field Gross-Pitaevskii (GP) equation have appeared
[1–8], as well as experiments demonstrating their exis-
tence in atomic Bose-Einstein condensation (BEC) [5,6].
Since the underlying many-body Schrödinger equation is
linear, this raises the question of how observed solitonic
behavior arises. Here this issue will be examined with the
aid of exact many-body solutions. It has been shown by
Olshanii [9] that at sufficiently low temperatures, densities,
and large positive scattering length, a BEC in a thin atom
waveguide has dynamics which approach those of a one-
dimensional (1D) gas of impenetrable point bosons. This
is a model for which the exact many-body energy eigenso-
lutions were found in 1960 using an exact mapping from
the Hilbert space of energy eigenstates of an ideal gas of
fictitious spinless fermions to that of many-body eigen-
states of impenetrable, and therefore strongly interacting,
bosons [10,11]. The term “Bose-Einstein condensation” is
used here in a generalized sense; it was shown by Lenard
[12] and by Yang and Yang [13] that for the many-boson
ground state of this system the occupation of the lowest
single-particle state is of the order of

p
N where N is the

total number of atoms, in contrast to N for usual BEC.
Nevertheless, since N ¿ 1 and the momentum distribu-
tion has a sharp peak in the neighborhood of zero momen-
tum [9], this system shows strong coherence effects typical
of BEC. The response of a BEC of this type to the applica-
tion of a delta-pulsed optical lattice was recently calculated
by Rojo et al. [14], using the Fermi-Bose mapping theo-
rem [10,11], as an exactly calculable model of dynami-
cal optical lattice behavior. They found spatial focusing
and periodic self-imaging (Talbot effect), which decay as
a result of interactions. This decay is absent in the GP ap-
proximation and therefore serves as a signature of many-
body interaction effects omitted in GP.

In this Letter, we examine the appearance of dark soli-
tonlike structures using the model of a 1D hard-core Bose
gas in a toroidal trap, or ring, with cross section so small
that motion is essentially circumferencial [15–19]. The
Fermi-Bose mapping is employed to generate exact solu-
tions for this problem. We identify stationary solutions
which reflect some properties of dark solitons from the
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GP theory when the ring is pierced at a point by an intense
blue-detuned laser. We also present dynamical solutions
when half of an initially homogeneous ring BEC is phase
imprinted via the light-shift potential of an applied laser,
leading to gray solitonlike structures whose velocity de-
pends on the imposed phase shift [5,6]. Such structures
are apparent for times less than the echo time te � L�c,
with L the ring circumference and c the speed of sound
in the BEC. On longer time scales the dynamics becomes
very complex showing Talbot recurrences which are be-
yond the GP theory.

Time-dependent Fermi-Bose mapping theorem.—The
original proof [10,11] was restricted to energy eigenstates,
but the generalization to the time-dependent case is almost
trivial. The Schrödinger Hamiltonian is assumed to have
the structure

Ĥ �
NX

j�1

2
h̄2

2m
≠2

≠x2
j

1 V �x1, . . . , xN ; t� , (1)

where xj is the one-dimensional position of the jth par-
ticle and V is symmetric (invariant) under permutations of
the particles. The two-particle interaction potential is as-
sumed to contain a hard core of 1D diameter a. This is
conveniently treated as a constraint on allowed wave func-
tions c�x1, . . . , xN ; t�:

c � 0 if jxj 2 xkj , a, 1 # j , k # N , (2)

rather than as an infinite contribution to V , which then
consists of all other (finite) interactions and external po-
tentials. The time-dependent version starts from fermionic
solutions cF�x1, . . . , xN ; t� of the time-dependent many-
body Schrödinger equation (TDMBSE) Ĥc � ih̄≠c�≠t
which are antisymmetric under all particle pair exchanges
xj $ xk , hence all permutations. As in the original theo-
rem [10], define a “unit antisymmetric function”

A�x1, . . . , xN � �
Y

1#j,k#N

sgn�xk 2 xj� , (3)

where sgn�x� is the algebraic sign of the coordinate differ-
ence x � xk 2 xj , i.e., it is 11�21� if x . 0(x , 0). For
a given antisymmetric cF , define a bosonic wave function
cB by

cB�x1, . . . , xN ; t� � A�x1, . . . , xN �cF�x1, . . . , xN ; t� ,

(4)
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which defines the Fermi-Bose mapping. cB satisfies the
hard-core constraint (2) if cF does, is totally symmet-
ric (bosonic) under permutations, obeys the same bound-
ary conditions as cF , e.g., periodic boundary conditions
on a ring, and ĤcB � ih̄≠cB�≠t follows from ĤcF �
ih̄≠cF�≠t [10,11].

Exact solutions for impenetrable point bosons.—The
mapping theorem leads to explicit expressions for all
many-body energy eigenstates and eigenvalues of a 1D
scalar condensate (bosons all of the same spin) under the
assumption that the only two-particle interaction is a zero-
range hard-core repulsion, represented by the a ! 0 limit
of the hard-core constraint. Such solutions were obtained
in Sec. 3 of the original work [10] for periodic boundary
conditions and no external potential. The exact many-
body ground state was found to be a pair product of Bijl-
Jastrow form: c0 � const

Q
i.j jsin�pL21�xi 2 xj��j. In

spite of the very long range of the individual pair corre-
lation factors jsin�pL21�xi 2 xj��j, the pair distribution
function D�xij�, the integral of jc0j

2 over all but two
coordinates, was found to be of short range: D�xij� �
1 2 j2

0�prxij�, with j0 � sinj�j. The system was found
to support propagation of sound with speed c � p h̄r�m
where r � N�L, the 1D atom number density.

To generalize to the time-dependent case, assuming that
the many-body potential of Eq. (1) is a sum of one-body
external potentials V �xj , t�, one generalizes the time-
independent determinantal many-fermion wave function
[10] to a determinant

cF�x1, . . . , xN ; t� � C
N

det
i,j�1

fi�xj , t� , (5)

of solutions fi�x, t� of the one-body TDSE in the exter-
nal potential V �x, t�. It then follows that cF satisfies the
TDMBSE, and it satisfies the impenetrability constraint
(vanishing when any xj � x�) trivially due to antisymme-
try. Then by the mapping theorem cB of Eq. (4) satisfies
the same TDMBSE.

Dark solitons on a ring.—Consider N bosons in a tight
toroidal trap, and denote their 1D positions measured
around the circumference by xj . This is equivalent to the
exactly solved model [10] of N impenetrable point bosons
in 1D with wave functions satisfying periodic boundary
conditions with period L equal to the torus circumference,
and the fundamental periodicity cell may be chosen as
2L�2 , xj , L�2. However, the rotationally invariant
quantum states of this problem do not reveal any dark
solitonlike structures. To proceed we therefore consider
the case that a blue-detuned laser field pierces the ring at
x � 0 by virtue of the associated repulsive dipole force:
The light sheet then provides a reference position for the
null of the dark soliton. Assume that the light sheet is so
intense and narrow that it may be replaced by a constraint
that the many-body wave function (hence the orbitals fi)
must vanish whenever any xj � 0. Then the appropriate
5692
orbitals fi�x� are free-particle energy eigenstates vanish-
ing at x � 0 and periodic with period L. The complete
orthonormal set of even-parity eigenstates f

�1�
n and odd-

parity eigenstates f
�2�
n are

f�1�
n �x� �

q
2�L sin��2n 2 1�pjxj�L� ,

f�2�
n �x� �

q
2�L sin�2npx�L� , (6)

with n running from 1 to `. The odd eigenstates are the
same as those of free particles with no x � 0 constraint,
since these already vanish at x � 0. However, the even
ones are strongly affected by the constraint, their cusp
at x � 0 being a result of the impenetrable light sheet
at that point. If one bends a 1D box 2L�2 , x , L�2
with impenetrable walls into a ring, identifying the walls at
6L�2, then those particle-in-a-box eigenfunctions which
are even about the box center become identical with the
f

�1�
n , and their cusp results from the nonzero slope of

these functions at the walls. The N-fermion ground state
is obtained by inserting the lowest N orbitals (6) into the
determinant (5) (filled Fermi sea). Assume that N is odd.
Since f

�1�
1 is lower than f

�2�
1 , this Fermi sea consists of

the first �N 1 1��2 of the f
�1�
n and the first �N 2 1��2

of the f
�2�
n . The N-boson ground state is then given by

(4). Since A2 � 1, its one-particle density r�x� is the same
as that of the N-fermion ground state, the sum of partial
densities contributed by all one-particle states in the Fermi
sea. Thus it is the sum of

r�1��x� �
N 1 1

2L
2

sin�2�N 1 1�px�L�
2L sin�2px�L�

(7)

and

r�2��x� �
N 2 1

2L

2
sin��N 2 1�px�L� cos��N 2 3�px�L�

L sin�2px�L�
. (8)

In the thermodynamic limit N ! `, L ! `, N�L ! r

for fixed x, r�6� each contribute half of the total density
r�x�:

r�x� � r�1 2 j0�2prx�� . (9)

Since j0�0� � 1, r�x� vanishes at x � 0 and approaches
the mean density r over a healing length Lh � 1�2r with
damped spatial oscillations about its limiting value. This
has some similarity to the density r` tanh2�x�w� of a GP
dark soliton [20], with r` the background density, but
in the GP theory the healing length scales as w ~ r

21�2
` .

However, it is only the odd component r�2��x� � r�x��2
which has the feature of a dark soliton that the correspond-
ing odd orbitals have a p phase-jump at x � 0 (and also
at x � 6L�2 to obey the periodic boundary conditions).
But the odd and even components can never be separated
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physically, so the odd dark solitonlike component is always
accompanied by the even nonsoliton component.

Next, suppose that the light sheet is turned off at t � 0
by removing the constraint that the wave function vanish at
x � 0. The solution of the TDMBSB for the many-boson
system is then given by (4) where the Slater determinant
(5) is built from the first �N 1 1��2 of the f

�1�
n �x, t� and

the first �N 2 1��2 of the f
�2�
n �x, t�, where these time-

dependent orbitals are solutions of the single-free-particle
TDSE which (a) reduce to the orbitals (6) at t � 0, and
(b) satisfy periodic boundary conditions with periodic-
ity cell 2L�2 , x , L�2. The odd solutions are triv-
ial: Since these never “see” the x � 0 constraint even
for t , 0, they differ from the odd orbitals (6) only by
time-dependent phase shifts: f

�2�
n �x, t� � f

�2�
n �x�e2ivnt

with vn � h̄k2
n�2m and kn � 2np�L. It follows that

r�2��x, t� is time independent, and given in the thermo-
dynamic limit by

r�2��x, t� � �r�2� �1 2 j0�2prx�� . (10)

This further reinforces our view that the odd component
of the density shares features of a dark soliton. The even-
parity orbitals f

�1�
n �x, t� are complicated since the removal

of the light sheet constitutes a large, sudden perturbation.
Indeed, the periodic even-parity solutions of the free-
particle Schrödinger equation are x

�1�
p �x� �q

�2 2 dp0��L cos�2ppx�L� with p � 0, 1, 2, . . . , and

these are very different from the solutions f
�1�
n �x� with

the x � 0 constraint [Eq. (6)]. Nevertheless, since the
x

�1�
p �x� are complete for the subspace of even-parity,

spatially periodic functions, one can expand the f
�1�
n �x, t�

in terms of the x
�1�
p �x�, which evolve with time-dependent

phases e2ivpt with vp � h̄k2
p�2m and kp � 2pp�L.

One finds

f�1�
n �x, t� �

2�2n 2 1�
p

s
2
L

3
X̀
p�0

�2 2 dp0� cos�kpx�e2ivpt

�2n 2 1�2 2 4p2 , (11)

r�1��x, t� is the sum of absolute squares of the first �N 1

1��2 of the sums (11), generalizing (7). Adding the time-
independent expression r�2��x, t�, given in the thermo-
dynamic limit by (10) or exactly by (8), one finds the
time-dependent total density r�x, t�. There are two im-
portant time scales: One is the Poincaré recurrence time
tr . Noting that vp in (11) is proportional to p2, one finds
that all terms in the sum are time periodic with period
tr � mL2�p h̄, which is therefore the recurrence time for
the density and in fact all properties of our model [14].
The other important time is the echo time te, the time
for sound to make one circuit around the torus. Recall-
ing that the speed of sound in this system is c � p h̄r�m
[10], one finds te � tr�N . For t ø te after the constraint
is removed, the initial density develops sound waves that
propagate around the ring, and that we examine below in
the context of phase imprinting. For t . te the evolution
is very complex, but complete recurrences occur for times
t � ntr with fractional revivals in between.

Gray soliton formation by phase-imprinting.—Consider
next a toroidal BEC in its ground state to which a phase-
imprinting laser is applied over half the ring at t � 0. This
is described by the single-particle Hamiltonian

Ĥ �
NX

j�1

∑
2

h̄2

2m
≠2

≠x2
j

2 h̄Dud�t�S�xj�
∏

, (12)

where S�x� � u�L�4 2 jxj�, i.e., unity for 2L�4 ,

x , L�4 and zero elsewhere. This is the technique
used in recent experiments [5,6], here idealized to a
delta function in time and to sharp spatial edges. Be-
fore the pulse the most convenient free-particle orbitals
in (5) are plane waves fn�x� �

p
�1�L�eiknx where

kn � 2np�L and n � 2nF , 2nF 1 1, . . . , nF 2 1, nF

with nF � �N 2 1��2. Let fn�x, t� be the solution of the
TDSE with the Hamiltonian (12) reducing to the above
fn�x� just before the pulse. Then the solutions just after
the pulse are fn�x, 01� � fn�x�eiS�x�Du. The potential
gradients at the pulse edges impart momentum kicks to
the particles there which induce both compressional waves
propagating at the speed c of sound and density dips
(gray solitons) moving at speeds jyj , c. The expansion
of fn�x, t� in terms of the unperturbed plane waves is
evaluated as

fn�x, t� �
1
2

�1 1 eiDu� 2
1 2 eiDu

p

X̀
��2`

3
�21��fn22�21�x�e2ivn22�21t

2� 1 1
, (13)

and the time-dependent density is the sum of the absolute
squares of the lowest N of these. Figure 1 shows numerical
simulations obtained using Eq. (13) for N � 51, t�te �
0.051, and Du � p (solid line), and Du � 0.5p (dashed
line): due to symmetry we show only half of the ring
2L�2 , x , 0, the phase shift being imposed at x �
2L�4. Considering times short compared to the echo time
means that the corresponding results are not very sensitive
to the periodic boundary conditions, and also therefore
apply to a linear geometry. The initial density profile is
flat with a value r0L � 51. For both phase shifts two
distinct maxima are seen, which travel at close to the speed
of sound c, and two distinct minima, which are analogous
to gray solitons and travel at velocities jyj�c , 1.

In addition, there are also high wave vector oscillations
which radiate at velocities greater than c. In the case
of a phase shift Du � p , the density is symmetric about
x � 2L�4, whereas for a phase shift other than a multiple
of p the evolution is not symmetric; see the dashed line
5693
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FIG. 1. Scaled density r�x, t�L versus scaled position around
the ring x�L for N � 51, t�te � 0.051, and Du � p (solid
line), and Du � 0.5p (dashed line). Because of symmetry we
show only half of the ring 2L�2 , x , 0, the phase jump being
imposed at x � 2L�4.

where the global minimum moves to the right in response
to the phase shift.

In Fig. 2 we plot the calculated velocity of the global
density minimum relative to the speed of sound for a vari-
ety of phase shifts Du. The basic trend is that larger phase
shift means lower velocity, in qualitative agreement with
recent experiments [5,6], but there is a sharp velocity peak
at Du � 0.83p: This peak results from the crossover be-
tween two local minima in the density. These general fea-
tures, the generation of gray solitons and density waves,
agree with those of the GP theory, but here arise out of the
exact many-body calculation.

In conclusion, using our exactly soluble 1D model we
hope to have shown that the dark solitonic features of
atomic BECs normally described within the mean-field GP
theory arise naturally from consideration of the exact lin-
ear many-body theory for times less than the echo time.
An advantage of this approach is that it is number conserv-
ing and does not rely on any symmetry-breaking approxi-
mation. In addition, long time dynamics such as collapses
and revivals are accounted for [14]. A detailed compari-
son between our results and current experiments is not pos-
sible as they do not conform to the conditions for a 1D
system. However, some estimates are in order to set the
appropriate time scales: If we consider 87Rb with a ring
of circumference L � 100 mm, and a high transverse trap-
ping frequency v� � 2p 3 105 Hz, then we are limited
to atom numbers N , 300 [9], so these are small con-
densates. We then obtain tr � 4.6 s, and te � 90 ms for
N � 51. Finally, we remark that since our approach relied
on the mapping between the strongly interacting Bose sys-
tem and a noninteracting “spinless Fermi gas” model, this
suggests that dark and gray solitons should also manifest
themselves in the density for the 1D Fermi system. Al-
5694
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.5

0.6

0.7

0.8

0.9

1

∆θ π/

|v
|/c

FIG. 2. Dark soliton velocity jyj�c scaled to the speed of
sound c as a function of phase shift Du�p for N � 51.

though real fermions have spin, the interactions used here
to generate solitons were spin independent.
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