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Bose-Einstein Condensates with 1���r Interatomic Attraction:
Electromagnetically Induced “Gravity”
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We show that particular configurations of intense off-resonant laser beams can give rise to an attractive
1�r interatomic potential between atoms located well within the laser wavelength. Such a “gravitational-
like” interaction is shown to give stable Bose-Einstein condensates that are self-bound (without an
additional trap) with unique scaling properties and measurably distinct signatures.

PACS numbers: 03.75.Fi, 04.40.–b, 34.20.Cf, 34.80.Qb
In the atomic Bose-Einstein condensates (BECs) created
thus far [1] the atoms interact only at very short distance
in good correspondence with the hard-sphere model. The
majority of the properties of these dilute gases can be un-
derstood by taking into account only two-body collisions
which are characterized by the s-wave scattering length
[2]. A number of groups [3] have investigated the fascinat-
ing possibility of changing the magnitude and sign of the
s-wave scattering length using external fields. The result-
ing condensates retain the essential hard-sphere, s-wave,
nature of the interatomic interaction.

Here we introduce a qualitatively new regime of cold
atoms in which the atom-atom interactions are attractive
and have a very long range, varying as r21 [4].

We shall demonstrate that a stable BEC with attractive
r21 interactions is achievable by irradiating the atoms with
intense, extremely off-resonant, electromagnetic fields.
The atoms are then coupled via the dipoles that are in-
duced by these external fields (in contrast to those induced
by the random vacuum field responsible for the van der
Waals–London interaction, which varies as r26, and leads
to the usual hard-sphere description) [5].

Such an r21 attractive potential can simulate gravity be-
tween quantum particles. Remarkably, this potential gives
an interatomic attraction (depending on the laser intensity
and wavelength) which can be some 17 orders of magni-
tude greater than their gravitational interaction at the same
distance.

This suggests it might be possible to study gravitational
effects, normally only important on the stellar scale, in
the laboratory. Particularly interesting is the possibility of
experimentally emulating boson stars [6]: gravitationally
bound condensed boson configurations of finite volume,
in which the zero-point kinetic energy balances the gravi-
tational attraction and thus stabilizes the system against
collapse.

In this Letter we shall discuss the interplay of the usual
hard-core interatomic potential with an electromagneti-
cally induced “gravitational” one on a BEC using a varia-
tional mean-field approximation (MFA). Two new physical
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regimes with unique scaling properties emerge where the
BEC is self-bound (no trap required).

How can one realize the r21 potential between neutral
atoms? Consider the dipole-dipole interaction energy in-
duced by the presence of external electromagnetic radia-
tion of intensity I , wave vector q, and polarization ê. This
energy can be written (within fourth order perturbation the-
ory) in terms of Cartesian components i, j [5] (in S.I. units)

U�r� �

µ
I

4pc´
2
0

∂
a2�q�ê�

i êjVij�q, r� cos�q ? r� . (1)

Here r is the interatomic axis, a�q� the isotropic, dynamic,
polarizability of the atoms at frequency cq, and Vij is the
retarded dipole-dipole interaction tensor

Vij �
1
r3 ��dij 2 3r̂i r̂j� �cosqr 1 qr sinqr�

2 �dij 2 r̂i r̂j�q2r2 cosqr� , (2)

where r̂i � ri�r . We stress that the atoms exchange only
virtual photons and remain unexcited. For a fixed orien-
tation of the interatomic axis with respect to the external
field, Eqs. (1) and (2) give the well known r23 variation of
the interaction energy at near-zone separations (qr ø 1).
The near-zone limit of U�r� is strongly anisotropic. It
was noted by Thirunamachandran [5] that when an aver-
age over all orientations of the interatomic axis with re-
spect to the incident radiation direction is taken, the static
dipolar part of the coupling [i.e., the instantaneous, non-
retarded part r23�dij 2 3r̂i r̂j�] vanishes. The remaining
“transverse” part is, in the near zone, an attractive r21 po-
tential. It is weaker by a factor of �qr�2 than the r23 term.

However, thus far no scheme has been suggested
wherein an average over all orientations is guaranteed for
cold gases. We shall consider a spatial configuration of
external fields which enforces the “averaging out” of the
r23 interactions. A simple combination, which ensures
the suppression of the r23 interaction while retaining
the weaker r21 attraction in the near zone, uses three
orthogonal circularly polarized laser beams pointing along
x̂, ŷ, ẑ (“a triad”—see Fig. 1). Let us momentarily ignore
© 2000 The American Physical Society 5687
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FIG. 1. (a) Schematic depiction of a triad of lasers incident
upon an ensemble of atoms. This triad generates the attractive
r21 potential given by Eq. (3), whose magnitude has the angular
dependence shown in (b).

interference between the three beams, and consider only
the sum of their intensities. In the near zone one can Taylor
expand Eqs. (1) and (2) in powers of the small quantity qr .
Using the identity ê

��6�
i �q�ê�6�

j �q� � 1
2 ��dij 2 q̂iq̂j� 6

ieijkq̂k�, with 1�2� corresponding to left (right) circular
polarizations, together with Eqs. (1) and (2), the triad can
be shown to give rise to the (near-zone) r21 pair potential

U�r� � 2
3Iq2a2

�16pc´
2
0�
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r

∑
7
3

1 �sinu cosf�4

1 �sinu sinf�4 1 �cosu�4

∏
.

(3)

Note that this interaction is attractive for any orientation
�u, f� of r relative to the beams as long as the polarizabil-
ity a�q� is real.

If one wishes, the angular anisotropy in (3) can be can-
celed to give a purely radial r21 potential by combining
a number of such triads with different orientations. It is
convenient to define the orientation of each triad by the
Euler angles �a, b, g� [7], namely, a rotation of a about
the ẑ axis, followed by a rotation of b about the new ŷ axis
and finally a rotation of g about the final ẑ axis. One con-
figuration that cancels the anisotropy completely uses six
triads (18 laser beams) rotated through the following Euler
angles: �0, p�4, p�8�, �0, p�4, 2p�8�, �0, p�4, 3p�8�,
�0, p�4, 23p�8�, �0, 0, p�8�, �0, 0, 2p�8�. The last two
triads should be of half the intensity I of the others. Then
the interatomic potential becomes

U�r� � 2
11
4p

Iq2a2

c´
2
0

1
r

� 2
u
r

. (4)

The main difficulty in realizing the near-zone r21

potential is that the r23 interaction survives due to the in-
terference between different pairs of beams, whose contri-
bution is proportional to the product of their respective
field amplitudes. This difficulty can be overcome if one in-
troduces frequency shifts between the laser beams. Spread-
ing the frequencies vn of the En laser fields (n � 1, 2, 3
for one triad or n � 1, 2, . . . , 18 for six triads) in intervals
about the central frequency makes the r23 interference
terms in the interaction energy ~ EnE�

n0 (n fi n0) oscillate
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at the difference frequencies jvn 2 vn0 j. If these differ-
ence frequencies are much higher than the other relevant
frequencies (e.g., collective oscillation frequencies), then
the contribution of the interference terms to the mean-
field potential averages to zero. Typically these conditions
hold for jvn 2 vn0 j $ 104 Hz. Angular misalignment
errors, d, between the orthogonal beams should satisfy
d ø q L (where L is the mean radius of the condensate)
and intensity fluctuations should satisfy DI�I ø q L, in
order to ensure the r23 cancellation for the noninterfering
terms ~

P
n jEnj

2. Although these oscillating r23 terms
do not contribute to the mean-field potential, they can
eject atoms from the condensate, but this process can be
strongly reduced, as will be discussed at the end of this
Letter.

A lower bound on the magnitude of the r21 attraction
is obtained by using the static rather than dynamic polariz-
ability, which for sodium atoms, say, has the value 24.08 3

10224 cm3. Thus, for strongly off-resonant light, that
from a CO2 laser (q � 2p�10.6 mm) say, of intensity
I � 108 W�cm2, one finds 2u�r � 22 3 10215 eV, at
r � 100 nm, the mean separation in a typical BEC. This is
comparable to the magnitude of the van der Waals–London
dispersion energy at this distance. However, in a system of
many atoms the r21 potential acts over the entire sample,
whereas the van der Waals–London interaction is effective
only for nearest neighbors, and the r21 contribution to the
total energy can become important.

Our treatment of the many particle problem is based
on a two-body potential V �r� � 4pah̄2d�r��m 2 u�r,
where the first term is the pseudopotential arising from the
s-wave scattering (a is the s-wave scattering length and
m the atomic mass). In order to write V in this form we
require that the 2u�r potential be sufficiently weak (com-
pared with the mean kinetic energy per particle) so as not to
affect the short-range hard-sphere scattering. This require-
ment certainly holds if a� ¿ lDB ¿ a, where lDB is the
de Broglie wavelength and a� � h2�mu is the Bohr radius
associated with the gravitational-like coupling u. With the
values given above a� � 10 cm, while for a typical BEC
lDB � 1025 1023 m and a � 3 nm.

Consider now the application of this two-body potential
to a trapped dilute BEC gas well below the critical tempera-
ture. We assume that the condensate initially occupies a
fraction of the wavelength of the laser so that the near-zone
condition is valid (lasers in the far infrared, or microwave
sources would satisfy this condition). The “zero-
temperature” many-body problem leads, within the MFA,
to the following equation for the order parameter C�R, t�:

ih̄
≠C�R, t�

≠t
�

∑
2

h̄2

2m
=2 1 Vext�R� 1 VH�R�

∏
C�R, t� ,

(5)

where Vext�R� � mv
2
0R2�2 is for simplicity an isotropic

trap potential (which can be set to zero in certain
cases—see below), and VH�R� is the self-consistent
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Hartree potential

VH�R� �
4pah̄2

m
jC�R, t�j2 2 u

Z
d3R0 jC�R0, t�j2

jR0 2 R j
.

(6)

The order parameter C�R, t� is normalized so thatR
d3R jC�R, t�j2 � N , with N the total number of atoms.

The usual Gross-Pitaevskii (GP) equation [2] is recovered
in the limit when u � 0. The MFA is valid when the
system is dilute, i.e., ra3 ø 1, with r the density. An
additional condition on the MFA validity is that the r21

potential is weak, and this can be expressed as ra3
� ¿ 1.

This constraint, as in the related problem of the charged
boson gas [8], means that many atoms must be present
within the interaction volume a3

� . However, it is, in fact,
the diluteness condition that turns out to be the stricter of
the two, as one can check from the MFA results for the
density (see Table I below).

An analytical estimate for the mean radius of the
N-atom condensate can be given using the following
variational wave function

Cl�R� � N1�2�pl2l2
0�23�4 exp�2R2�2l2l2

0� , (7)

where l0 �
p

h̄�mv0. The variational parameter l is pro-
portional to the root mean square radius through

p
�R2	 �p

3�2 ll0. This parameter is obtained by minimizing the
variational mean-field energy

H�l�
N h̄v0

�
3
4

µ
l22 1 l2 2 2ũl21 1

2
3

s̃l23

∂
, (8)

where we have chosen the dimensionless ũ (proportional
to the “gravity” strength u) and s̃ (proportional to s-wave
scattering length a) to be

ũ � p
p

32p�9 �Nl0�a�� ,

s̃ �
p

2�p �Na�l0� . (9)

The numerical factors are chosen to make the equation for
l simple

2l24 1 1 1 ũl23 2 s̃l25 � 0 . (10)

This equation is equivalent to requiring that the varia-
tional solution satisfies the following virial relation: 2T 1

TABLE I. A comparison of the four asymptotic regions. The
radius, l, and the release energy, Erel, are discussed in the text.
rmax is the peak density (at the center) of the condensate.

G TF-G TF-O I

defn.: ũ ¿ 1 s̃ ø ũ5�3 s̃ ¿ 1 ũ ø 1
s̃ ø 1�ũ s̃ ¿ 1�ũ s̃ ¿ ũ5�3 s̃ ø 1

l: 1�ũ �s̃�ũ�1�2 s̃1�5 1

Erel�h̄v0: 3

4
ũ2N

1

2
ũ3�2s̃21�2N

1

2
s̃2�5N

3

4
N

~ N3 ~ N2 ~ N7�5 ~ N

rmax:
p

323p3N4

27a3
�

2p2N
p

aa�
3

152�5N2�5

8pa3�5l
12�5
0

N
p

p3l3
0

Vext 2
1
2Uu 2

3
2Us � 0, where T , Vext, Uu, and Us are

the kinetic energy, the harmonic trap potential energy, and
the internal energies due to the 2u�r and hard-sphere
interatomic potentials, respectively. This relation can be
obtained from scaling considerations (see Ref. [9] for the
case u � 0).

The general asymptotic properties of the ground state
solutions of Eqs. (5) and (6), as a function of �ũ, s̃�, are
summarized in the “phase diagram” of Fig. 2a for positive
scattering lengths. In this diagram there are four asymp-
totic regions: The noninteracting ideal region (I) and the
ordinary Thomas-Fermi region (TF-O) are dominated by
the balance of the external trap potential with, respectively,
the kinetic energy and the repulsive s-wave scattering, and
so are not sensitive to the 2u�r potential. The regions G
and TF-G, which represent two new physical regimes for
atomic BECs, are controlled by the balance of the gravity-
like potential with either the kinetic energy (G) or the
s-wave scattering (TF-G). Neither region is sensitive to
the external trap, so that we can adiabatically turn it off
(Vext � 0) and access either the G or the TF-G region. Ex-
perimentally, direct signatures of the r21 interaction come
from the radius l and the release energy Erel � T 1 Us.
The release energy is the kinetic energy that can be mea-
sured after the expansion occurring due to switching off
the external trap and the laser fields [2]. Table I summa-
rizes these quantities as well as the peak density rmax in
the four regions. We now focus on the properties of the
two new regimes: (a) In the TF-G region an analytic solu-
tion for the ground state of Eqs. (5) and (6) is given by

CTF-G�R� �

p
N

2R0

s
sin�pR�R0�

R
Q�R0 2 R� , (11)

FIG. 2. (a): Contour plot of log�l�, where l is the condensate
radius, in the parameter space log�ũ� versus log�s̃�: darker shade
corresponds to smaller l. The border separating the TF-O and
TF-G regions is given by s̃ � ũ5�3 and that separating the TF-G
and G regions by s̃ � ũ21. (b) Mean energies per particle for
large ũ (no external trap) as a function of the condensate radius.
Curves are plotted for positive as well as negative values of the
scattering strength s̃ũ. For s̃ũ # 21�4 there is no minimum for
a finite radius. The energy and radii units are ũ2 h̄v0 and l0�ũ,
respectively.
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where R0 �
p

aa��2. Contrary to the ordinary Thomas-
Fermi limit of the GP equation, the size of the condensate
is fixed by the ratio of the coupling constants, 4pah̄2�m
and u, and is independent of N . (b) The G region, where
only the r21 attraction and kinetic energy play a role, is
of particular interest since our system is then equivalent
to a boson star (a system of gravitating bosons) [6] in
the nonrelativistic regime. The mean-field equations in
this region are also identical to those describing a single
particle moving in the gravitational field generated by its
own wave function [10]. In both cases smooth bound
solutions have been shown to exist [6,10]. This establishes
the possibility of a stable self-bound (no external trap) r21

condensate.
The gravitational-like attraction does not induce “col-

lapse” of the condensate, since, at short radii, it is always
weaker than the kinetic energy. This can be seen from
the scaling of the kinetic energy (l22) versus that of the
r21 potential (l21) in Eq. (8) and Fig. 2b. By contrast,
this kind of instability can occur for negative scattering
lengths [3,4] when N exceeds a critical number (Ncr �
0.6 3 l0�jaj) because the mean energy due to scattering
(l23) is dominant at small radii. The u�r attraction does
reduce, when combined with the attractive scattering, the
critical number to Ncr � 0.17 3

p
a��jaj (see Fig. 2b for

the critical case with s̃ũ � 21�4).
Now we estimate the losses of G or TF-G conden-

sates due to the r23 oscillating interfering terms discussed
above. Consider one of the possible oscillating interfering
terms A�r� cos�Vt�, where A�x, y, z� � 23u x y

q2 r5 and V

is the difference in frequency between the two interfering
lasers. Fermi’s golden rule gives an expression for the rate
of depletion of the condensate density jCj2 due to creation
of a pair of quasiparticles of opposite momenta (with k �
6

p
mV�h̄) in an homogeneous Bose gas: djCj2�dt �

2�jA�k�j2�6p�jCj4�m�h̄2�3�2
p

V�h̄, where jA�k�j2 is the
angular average of the square of the Fourier transform of
A�r� (0.1418 u2�q4). Applied to our problem, we find the
following approximations: d N0�dt � ũ5

p
Vv0��ql0�4 in

the G region and d N0�dt � ũ7�2s̃23�2
p

Vv0��ql0�4 in
the TF-G region. These expressions can be used to find
conditions such that these loss rates are smaller than, say,
the trap oscillation frequency v0. Taking, e.g., V �
2p 3 104 s21, v0 � 2p 3 102 s21, ql0 � 1, ũ � 5, we
obtain the following: For the G region d N0�dt � 6 3

104v0; i.e., we need more than 105 atoms. For the TF-G
region (e.g., s̃ � 1), d N0�dt � 6 3 103v0; i.e., we need
more than 104 atoms.

Finally, we note that the collective Rayleigh scattering
of the off-resonant laser photons can in part excite phonons
in the condensate [11]. In our estimation the rate of deple-
tion due to Rayleigh scattering becomes sufficiently small
5690
(much smaller than the mean-field energy per particle di-
vided by h̄) when the system radius is smaller than the
laser wavelength (q

p
�R2	 ø 1).

To conclude, the laser-induced attractive r21 interac-
tion can give rise to stable condensates with unique static
properties. Their stability, long lifetime (low loss rates in-
curred by the r23 oscillating terms) and lack of sensitivity
to alignment errors or amplitude noise of the laser beams
makes the experimental realization of such condensates
rather likely. Their fascinating analogy with gravitating
quantum systems whose gravitational interaction can be
enormously enhanced by the field merits further research.
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