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Discrete Stochastic Modeling of Calcium Channel Dynamics
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We propose a discrete stochastic model for calcium dynamics in living cells. A set of probabilities
for the opening/closing of calcium channels is assumed to depend on the calcium concentration. We
study this model in one dimension, analytically in the limit of a large number of channels per site N ,
and numerically for small N . As the number of channels per site is increased, the transition from a non-
propagating region of activity to a propagating one changes from one described by directed percolation
to that of deterministic depinning in a spatially discrete system. Also, for a small number of channels a
propagating calcium wave can leave behind a novel fluctuation-driven state.

PACS numbers: 87.16.Xa, 05.40.–a, 82.20.Mj
It has become clear that the intracellular nonlinear dy-
namics of calcium plays a crucial role in many biologi-
cal processes [1]. The nonlinearity of this problem is due
to the fact that there exist calcium stores inside the cell
which can be released via the opening of channels which
themselves have calcium-dependent kinetics. Typically,
these processes are modeled using a set of coupled equa-
tions for the calcium concentration (the diffusion equation
with sources and sinks) and for the relevant channels; the
latter is often described by a rate equation for the frac-
tion of open channels per unit of area. More elaborate
models take into account the discrete nature of these chan-
nels, their spatial clustering, and fluctuations in the process
of their opening and closing [2,3].

In this paper, we will propose and analyze a set of
models which operate just with the channel dynamics
alone. The justification for this is that the calcium field
equilibrates quickly, with a diffusion time of perhaps
0.1 s, as compared to the channel transition times, perhaps
on the order of 1 s for activation of a subunit to several
seconds for its deactivation. One can then imagine solving
for the quasistationary calcium concentration and there-
after using it to determine the conditional probabilities
of channel opening or closing. With this perspective, the
most important determinants of the calcium concentra-
tion at any specific site, and hence the aforementioned
probabilities, are the states of the channels at that specific
location and at nearby locations. Hence, we will assume
this type of local coupling and investigate general features
of this class of models in a one dimensional geometry. In
a subsequent paper [4], we will show how one can derive
in detail a model of this form starting from a specific fully
coupled model (the DeYoung-Keizer model [5,6]).

For specificity, we will focus on systems that have IP3
(inositol 1,4,5-trisphosphate) channels. Each of these
channels consists of a number of subunits. Here we
assume that h subunits have to be activated for the channel
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to be open; experiments indicate that h � 3 [7]. A subunit
is activated when IP3 ion is bound to its corresponding
domain and Ca21 is bound to its activating domain and
not bound to its inhibiting site. The characteristic time of
binding and unbinding of IP3 is typically so fast (more
than 20 times faster than other binding steps [5]) that we
can assume that this reaction is always at equilibrium;
thus, the varying IP3 is equivalent to varying the number
of available channels. Furthermore, we assume that the
channels are spatially organized into clusters [8,9], with
a fixed number of channels N per cluster and a fixed
intercluster distance.

Our model is as follows. We introduce two stochastic
variables for each channel cluster: ni , the number of acti-
vated subunits, and mi , the number of inhibited subunits.
At every time step, the number of activated subunits ni at
site i is changed due to three stochastic processes: acti-
vation of additional subunits by binding available Ca21 to
their activation domains, deactivation by unbinding Ca21

from active subunits, and inhibition by binding available
Ca21 to their inhibition domains. Transitions involving
binding (but not those involving unbinding) depend on lo-
cal Ca21; hence we take these transition rates to depend on
the number of open channels at site i, ci , and on the num-
ber of open channels at the nearest neighboring sites i 6 1,
ci61. Similarly, there will be binding and unbinding to the
inhibitory domain, changing mi . We neglect direct tran-
sitions from the inhibited state back to an activated state,
since the unbinding of Ca21 from the activating site is very
fast once the subunit is inhibited. We denote by p6

0�1� the
probability to activate/inhibit a subunit per number of open
channels at the same site (0) or the neighboring site (1). To
compute the actual probabilities, we need to multiply these
by the number of open channels. Here, we use the simple
expedient of taking this to equal nh

i �hNh21
s where the total

number of subunits Ns � hN ; this is easily shown to be
the expected number of open channels for large enough N .
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This approach allows us to avoid keeping explicit account
of each of the independent subunits. Also, we let p6

d be
the deactivation and deinhibition probabilities which are c
independent.

Let us define the total probabilities p6 � p6
0 1 2p6

1
and the “diffusion constant” a � p6

1 ��p6
0 1 2p6

1 �.
We also denote Ci�t� � �1 2 2a�ci�t� 1 aci21�t� 1

aci11�t�, which mimics the amount of calcium at site
i due to open channels at sites i, i 6 1. Our model
explicitly consists of the following coupled stochastic
processes. ni is updated,

ni�t 1 Dt� � ni�t� 1 D1
n 2 D2

n 2 d1 , (1)

where D1
n is a random integer number drawn from the bi-

nomial distribution B���D1
n , Ns 2 ni�t� 2 mi�t�, p1Ci�t����,

D2
n is drawn from B���D2

n , ni�t�, p2Ci�t����, and d1
n is drawn

from B���d1
n , ni�t�, p1

d ���. The equation for mi reads

mi�t 1 Dt� � mi�t� 1 D1
m 2 d1

m , (2)

where D1
m is drawn from B���D1

m , Ns 2 mi�t�, p2Ci�t����,
and d1

m is drawn from B���d1
m , mi�t�, p2

d ���. In all these
formulas, B�x, y, p� � yxpx�1 2 p�y2x . Note that the
probability that IP3 is bound is included by rescaling the
number of subunits.

As a first step, we consider a simplified version of the
channel dynamics with the inhibition process excluded (all
p2 � 0), i.e., a subunit is activated whenever Ca21 is at-
tached to its activating site. Thus we take mi � 0, and
arrive at the one-variable model for the number of acti-
vated subunits ni . Let us first focus on fairly small Ns.
Examples of the stochastic dynamics for several values of
parameters are shown in Fig. 1. At small a, an initial
seed almost always ultimately dies giving rise to so-called
abortive calcium waves. At larger values of a the region of
activated channels typically expands at a finite rate. This
transition mirrors what has been seen in many experimen-
tal systems [9].

As is well known for statistical models such as the
contact process [10], the critical value of a can be
accurately determined by computing the distribution of

FIG. 1. Evolution of an initial seed of five clusters of
open channels in the middle of the lattice for p1Ns�h � 1,
p1

d � 0.2, h � 3, and Ns � 3, a � 0.1 (a), Ns � 3,
a � 0.25 (b), and Ns � 30, a � 0.25 (c). The horizontal axis
is the spatial coordinate (100 sites), and the vertical axis is time
(1000 iterations).
survival times P�t� for the activation process started
from a single active site. For a , ac, the distribution
falls exponentially at large t as the wave of activation
eventually dies out. On the contrary, at a . ac, P�t�
asymptotically reaches a constant value P`, since a
nonzero fraction of runs produce ever-expanding active
regions. At a � ac, the distribution function exhibits a
power-law asymptotic behavior with the slope determined
by the universality class of the underlying stochastic
process. Our data (not shown) indicate that ac is in-
versely proportional to the number of subunits per site
Ns. We have checked that our data are in the directed
percolation (DP) [11] class. For example, in Fig. 2 we
show P�t� of a cluster of open channels at the critical
value of ac for h � 3, Ns � 10, and g � 0.1. The
power-law dependence is consistent with the DP predic-
tion of P�t� ~ t20.159. This is perhaps not too surprising.
According to the Janssen-Grassberger DP conjecture [12],
any spatiotemporal stochastic process with short range
interactions, fluctuating active phase and unique non-
fluctuating (absorbing) state, single order parameter and no
additional symmetries, should belong to the DP class.
This result does open up the exciting possibility that
intracellular calcium dynamics could be an experimental
realization of the DP process.

Figure 1(c) shows the opposite limit where the dynamics
becomes almost deterministic. If we take Ns ! ` and fix
pNs�h ! P, we can use a mean-field description in terms
of the fraction of activated subunits ri � ni�Ns,

�ri � ��1 2 2a�rh
i 1 arh

i21 1 arh
i11� �1 2 ri� 2 gri ,

(3)

and where we rescaled time t0 � Pt�Dt and introduced
g � pd�P. For all h $ 2, if g , gcr [Eq. (3)] the system
possesses two stable uniform solutions, r � 0 and r �
r0 and one unstable solution ru, where r0,u are real roots
of the algebraic equation rh21�1 2 r� � g. The front is a
solution connecting these two stable fixed points; it is easy
to show that this front has a unique propagation velocity.

FIG. 2. The distribution of survival time for the stochastic
model with h � 3, g � 0.1, Ns � 10, and a � ac � 0.359.
Dashed line indicates the power-law scaling ~ t20.159.
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For small a, the discreteness of our spatial lattice causes
the front to become pinned, as the probability of activating
subunits at the neighboring site O�ar

h
0 � becomes smaller

than the threshold value for excitation probability O�ru�.
The stationary front solution is described by the recurrence
relation,

�1 2 2a�rh
i 1 arh

i21 1 arh
i11 �

gri

1 2 ri
. (4)

The bifurcation line which separates pinned and moving
fronts can be found in the limit of small a by using the
ideas of Ref. [13]. Indeed, in this limit, the values of ri

quickly (as ai) approach 0 and r0 away from the front
at i ! 6`, respectively. We can thus replace ri by r0
and 0 everywhere to the left and to the right of the front
position except for r6 at the two sites nearest to the front,
i 2 1 and i 1 1. Solving the resulting set of two alge-
braic equations up to a2, one can obtain the values of
r6. At any g, there is a critical value of am at which
the real solution r6 vanishes. The family of these values
am forms the bifurcation line for front pinning in �g, a�
plane. At large a, discreteness of the mean-field model
(3) becomes insignificant, and (3) can be replaced by its
continuum limit

≠tr � �rh 2 a≠2
xrh� �1 2 r� 2 gr , (5)

which of course has no front pinning. Instead, a can be
scaled out and there is a specific value of g at which
the system goes from forward to backward propagating
fronts. Figure 3 shows the phase diagram of the mean-field
equation (3) for h � 3. All the data (except possibly at the
nongeneric case g � 0) are consistent with expected [13]
�a 2 am�1�2 scaling.

FIG. 3. Phase diagram of the mean-field equation (3) for h �
3: Curve (a): bifurcation line separating forward propagating
fronts from pinning region; (b): same for backward propagating
fronts; (c): small-a approximation of pinning line; (d): line
g � 4�27 separating the region of nonexistence of the excited
state; (e): Maxwell line g � 0.138, . . . separating forward and
backward front propagation in the continuum limit.
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How does one get from DP behavior to deterministic
pinning/depinning? To investigate this issue, we have
performed simulations for the front speed as a function of
a at various finite values of Ns, with the results given in
Fig. 4. At large Ns, the velocity approaches the mean-field
prediction as long as a . am. Close to critical value
am, the velocity deviates from the mean-field dependence
V ~ �a 2 am�1�2 because of thermally activated “creep”;
fluctuations allow the front to overcome potential barriers
associated with finite site separation, and lead to exponen-
tially slow front propagation (see, e.g., [14]). Directed per-
colation regime is not observed at large Ns since the DP
critical value ac is less than am. At smaller Ns, the relative
magnitude of the fluctuations grows, and the DP threshold
value ac exceeds am. Now, the front propagation is de-
termined by fluctuations rather than discreteness, and the
critical state exhibits the properties of directed percolation.

Now we return to the full two-variable stochastic model
which describes both activation and inhibition. Since the
probability of Ca21 binding to the inhibition domain is typ-
ically much smaller than those for the activation domain,
the inhibitor dynamics is slow. In the mean-field limit
Ns ! `, this model is similar to the FitzHugh-Nagumo
model often used to describe waves propagating in ex-
citable systems. One therefore expects that for a certain
range of binding/unbinding probabilities, the model gives
rise to pulse propagation; that is, once the wave passes,
the system goes into a state dominated by inhibition from
which it slowly recovers as the inhibitory domains slowly
unbind. This is indeed what we find for large enough Ns,
as shown in Fig. 5(a). Behind the pair of outgoing pulses,
the channels stay refractory for a certain time O�1�p2�
and then return to the quiescent state.

However, we find that having only a modest number
of channels N leads to fluctuations which strongly affect
the spatiotemporal behavior of the model. In fact, a new

FIG. 4. The average front speed as a function of a for sto-
chastic model at h � 3, g � 0.1, p1Ns�h � 1, p1

d � 0.1, and
different values of Ns. Solid line indicates the mean-field limit
Ns ! `.
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FIG. 5. Space-time evolution initiated by opening channels at
a single cluster in the middle of the lattice of 300 sites for
the full activation/inhibition model with p1 � 1, p1

d � 0.04,
p2 � 0.1, p2

d � 0.12, h � 3, a � 0.7, and Ns � 200 (a) and
Ns � 20 (b), 500 iterations.

dynamical state is formed behind the outgoing fronts, a
state which remains active at all subsequent times [see
Fig. 5(b)]. This state is catalyzed by backfiring, i.e., the
creation of oppositely propagating waves behind a moving
front. In the deterministic limit of our model, this cannot
occur as the system is completely refractory once the front
has passed. At finite N however, propagation of the front
does not lead to the activation and subsequent inhibition of
all the channels. Instead, a finite number of these remain
inactivated, providing a supply of active elements that can
still support wave propagation. There exist more compli-
cated deterministic models [15], such as one proposed for
CO oxidation on single crystal surfaces [16], which also
appear to have pulse-induced backfiring. There, however,
this effect is due to the loss of pulse stability which occurs
due to the rather complex nonlinear dynamics of the in-
hibitory field. Here, it is the fluctuations which allow for
this phenomenon.

We have checked that this backfiring-induced state oc-
curs as well in more realistic and more complex models
which solve for the calcium concentration together with
the channel dynamics. Again, the mechanism appears
to be the lack of complete inhibition in the wake of the
propagating pulse. Hence, our result that one should find
this behavior in intracellular calcium dynamics is not an
artifact of any of the simplifying assumptions used here.
Also, this state persists when the model is studied in higher
dimensions [4].

In summary, we proposed and studied a simple dis-
crete model of calcium channel dynamics based on the
assumption that calcium diffusion time is much smaller
than the characteristic times of Ca21 binding/unbinding.
This model demonstrates familiar properties of determin-
istic reaction-diffusion systems in the limit N ! ` when
fluctuations are small. For small N , we observed a tran-
sition in the directed percolation class, leading eventu-
ally to abortive waves. Inasmuch as there exists direct
experimental evidence [8,9] for this type of fluctuation-
induced transition, we predict that one should be able to
find DP behavior at a critical IP3 concentration. For the full
model including inhibition, we found at small N a novel
persistent fluctuation-driven state which emerges behind
a front of outgoing activation; this occurs in a parameter
regime where the corresponding deterministic system ex-
hibits only single outgoing pulses. Again, this will be ob-
servable if the relevant range of model parameters can be
attained experimentally by varying the available controls.
This issue will be addressed elsewhere [4].
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