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Dynamics of Complex Systems: Scaling Laws for the Period of Boolean Networks
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Boolean networks serve as models for complex systems, such as social or genetic networks, where each
vertex, based on inputs received from selected vertices, makes its own decision about its state. Despite
their simplicity, little is known about the dynamical properties of these systems. Here we propose a
method to calculate the period of a finite Boolean system, by identifying the mechanisms determining its
value. The proposed method can be applied to systems of arbitrary topology, and can serve as a roadmap
for understanding the dynamics of large interacting systems in general.
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Microscopic and spatial order, as well as compositional
homogeneity, being intrinsic properties of numerous
materials, have been the source of spectacular advances
in many branches of contemporary physics. However, we
often encounter systems that are composed of nonidentical
units with different functions, between which the interac-
tion is often long range and random. For example, living
systems are often viewed as genetic networks [1], whose
vertices are macromolecules with different functions,
connected through links of chemical origin. Similarly,
the society is a web of individuals interacting with a
selected group of other individuals [2]. The economy can
be viewed as a complex web of companies with different
interests that are linked by diverse business relationships
[3]. Despite the rather diverse functions the vertices have
in these examples, each shows a surprising degree of self-
organization that allows their continued functioning. These
examples, far from being exhaustive, offer a paradigm
different from that so successfully addressed by physical
sciences: many complex systems are composed of units
(vertices) with diverse and distinct functions that are con-
nected in a random fashion to other vertices in the system.
Understanding the emergence of order in these complex
systems is a formidable challenge to statistical mechanics.

A first step in this direction has been the introduc-
tion of Boolean networks [4] that allow the “individu-
als” (vertices) to follow different agendas. The Boolean
model (Fig. 1) consists of N vertices that are character-
ized by Boolean variables (spins) that can take up the
values si � 0 or 1. Each vertex receives input from Ki

selected vertices. The value of the Boolean variable at
every time step is updated according to the rule si�t 1

1� � Bi���s1�t�, s2�t�, . . . , sKi �t���� where Bi is a randomly
chosen Boolean function, predetermined and fixed for each
vertex. While in general Ki can vary, to decrease the com-
plexity of the problem, Kauffman [5] proposed a model in
which each vertex is connected to exactly K randomly se-
lected vertices. The dynamical properties of the model are
determined both by K [5] and the bias Q of the Boolean
law [6–8] (see Fig. 1b). For fixed K�.2� the model dis-
plays a phase transition from an ordered or “frozen” state
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for Q . Qc, in which the system breaks into isolated is-
lands, to a “chaotic” state for Q , Qc, where the system
behaves as a highly connected single random net, and a
perturbation in the state of a single vertex propagates over
the whole system [6,7].

An important quantity characterizing the dynamics of a
system of N vertices is the total period T �N�. The system
has 2N possible states, thus the dynamics follows a periodic
orbit with a maximum period 2N . Despite the numerous
attempts to determine T �N� as a function of N [5,7,9,10],
success has been achieved only for the fully connected case
�K � N� [10]. Numerical investigations have indicated
that in the ordered phase the period depends on a power
of N , while in the chaotic phase this dependence is expo-
nential [5,7]. However, due to the large fluctuations, the
conclusive nature of these numerical results was limited.

FIG. 1. In a Boolean system each vertex receives inputs from
K vertices. The spins of these neighbors can take up 2K different
configurations. The Boolean function Bi assigns each of these
2K inputs an output value of 0 or 1. The outputs are selected
randomly, choosing with probability Q the value 0 and with
probability �1 2 Q� the value 1. The Boolean table determines
at any time the spin of vertex i, based on the spins of its K
neighbors. In the figure we show an example for K � 2, where
vertex i receives four different inputs from two neighbors, j
and k (a). Table (b) defines Bi , by assigning an output [right
column, Bi�sj , sk�] to each input sj and sk (two left columns).
The 0 and 1 values in the right column have been selected
randomly. (c) Illustration of clustering in the one-dimensional
system. The active vertices (filled circles), whose spin fluctuates
in time, form clusters of different sizes s, separated by frozen
spins (open circles), whose value is independent of time.
© 2000 The American Physical Society
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Thus, despite numerous numerical and analytical attempts,
a quantitative understanding of the dynamical properties of
the Boolean systems is still missing. Here we take an im-
portant step towards filling the gap: we identify the factors
determining the period T �N� of a Boolean system, allow-
ing us to explicitly predict T �N� for the first time. We find
that T �N� can have a rather complex functional form, de-
termined by the interplay between the system’s complex
microscopic properties and its topology. Our predictions
for T �N� are in very good agreement with the numerical
results, and help to explain the uncertainties in earlier nu-
merical studies. Furthermore, we propose a method that
helps uncovering the period T �N� for systems of arbitrary
topology, and can serve as a roadmap for the investigation
of similar complex systems.

The one-dimensional system (1D).—To uncover the
main factors determining the period, we first study a 1D
system that has the simplest topology which nevertheless
gives nontrivial dynamics. In 1D the vertices form a circle,
so every vertex is connected to two neighbors (K � 2).
For a given Q the system is broken into one-dimensional
active clusters that are separated by inactive sites [5,9]
(see Fig. 1c). The origin of this clustering lies in the fact
that a fraction of the possible Boolean laws Bi result in
the freezing of the spin si , such that its value does not
change with time. Obvious examples are the tautology
(si � 1 for any input) and the contradiction (si � 0
for any input), but spins can freeze for other Bi as well,
depending on the dynamics of their neighbors. After a
transient period only a fraction P of the vertices is active.
Each active cluster of size s fluctuates independently
with a period Ti�s� # 2s. Consequently, the total period
T �N� is the least common multiplier of the periods of
the individual clusters. Thus, in order to determine the
expectation value of T �N�, we need to know the size
distribution of the active clusters, F�s�, and the expected
dependence of the individual cluster periods on their
size, i.e., the function T �s�. Whether a vertex i is active
or frozen depends on the updating rule Bi , and on the
dynamics of the neighboring spins si21 and si11. If the
vertices were to be independent, given the probability
P of a site to be active, percolation theory [11] predicts
that in 1D the fraction of active clusters of size s is
F�s� � ��1 2 P��P2� exp�2cs�, where c � 2 ln�P�. As
Fig. 2a indicates, the numerical results are in qualitative
agreement with this prediction, having the form

Fnum�s� � exp�2c�Q�s� , (1)

with c�Q� diverging as Q increases. Since F�s� is expo-
nential, the average cluster size �s� does not depend on
the system size, thus the average number of clusters is
n � n�Q� ~ N . A special role is played by the largest
cluster in the system, with size smax. The probability that
smax is smaller than a given value x is Prob�smax , x� �
�Prob�s , x��n � �1 2

PN
x F�s��n. For large n, smax is

the solution of the equation
0 10 20 30
10

-6

10
-4

10
-2

10
0

10
2

Q=0.5
Q=0.7
Q=0.8

(a)

F
nu

m
(s

)

 

s 101 102 103

100

101

(b)

N

 T
(N

)

4 8 12

10
1

s
max

T
m

ax

10
0

10
1

10
2

10
0

N/N
c

α(
N

)

FIG. 2. (a) Size distribution of the active clusters in the 1D
system for three values of Q. Inset: The dependence between
the size smax and the period Tmax of the largest active cluster.
(b) Comparison between the prediction of Eq. (6) (solid line)
and the numerically obtained period. Inset: N dependence of the
proportionality factor between T �N� and Tmax. In all simulations
we average over 200 realizations of Boolean functions, and 20
initial spin configurations. After a transient of 5000 time steps,
we identify the active vertices by studying their spin values for
another 5000 steps.

NX
smax

F�s� �
1
n

. (2)

Substituting (1) in (2), we obtain

smax � 2 1
lnn�Q�
c�Q�

, (3)

and, since the average cluster number n ~ N , smax depends
logarithmically on N .

The period T �N� is the least common multiplier of the
periods of the individual clusters, Ti�s�. The most domi-
nant contribution to T �N� is given by the largest individual
period, Tmax. We expect this to be the period of the largest
dynamic cluster, smax (we checked this numerically). We
have determined the scaling of Tmax with smax numerically,
obtaining

Tmax � exp�g�Q�smax� , (4)

where g�Q� increases with Q (see the inset of Fig. 2a).
For small systems there are only a few clusters and Tmax

is identical to the least common multiplier of the individ-
ual periods, T �N�. But the number of clusters increases
with N , and the probability that clusters different from
smax contribute to T �N� also increases. Thus T �N� is a
product of Tmax and a factor a�N� that accounts for the
appearance of smaller clusters with a period different from
the divisors of Tmax, i.e., T �N� � a�N�Tmax. As the inset
of Fig. 2b illustrates, we find that a�N� follows

a�N� �
Ω

1 if N ø Nc�Q� ,
Nb if N ¿ Nc�Q� , (5)

where b � 0.25 and Nc�Q� increases with Q.
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Finally, combining Eqs. (3)–(5) we obtain

T �N� �

Ω
C1N �g�Q��c�Q�� if N ø Nc�Q� ,
C2Nb1�g�Q��c�Q�� if N ¿ Nc�Q� ,

(6)

where C1 and C2 are the products of the constants appear-
ing in Eqs. (3)–(5). Figure 2b compares Eq. (6) and the
numerically obtained T �N�. The fit, which contains no free
parameters, is rather good for all Q values, underlying the
applicability of our method. Since in the 1D system per-
colation can be achieved only for P � 1, the system is in
the ordered regime for any Q. Thus Eq. (6) agrees with
numerical findings that in the ordered regime the period
has a power-law N dependence [5].

The agreement demonstrated in Fig. 3 indicates that
T �N� is determined by three factors: (a) the clustering
of the vertices into islands of active vertices isolated by
frozen vertices, quantified by F�s�, which determines smax;
(b) the relationship between the size and the period for a
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FIG. 3. Size distribution of the active clusters for the Cayley
tree in the (a) chaotic and the (b) ordered phases for N �
10 3070. (c) Dependence of Tmax on hsmax for the Cayley tree,
where h is defined in [14]. The functional form is independent
of Q. Inset: Dependence of smax on N , following a power
law. (d) Comparison between the prediction (11) (solid line)
and the numerical results for the Cayley tree. The behavior of
T �N� is very different for the two Q values, indicating that they
correspond to different phases. Inset: N dependence of ac�N�.
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cluster, i.e., Tmax�smax�; (c) the relationship between the
periods of individual clusters and the total period of the
system, i.e., a�N�. Since each of these can be determined
independently, we can formulate the following conjecture:

T �N� � a�N�Tmax�smax�N�� . (7)

At this point it is not clear whether (7) applies to systems
with more complex topology. In random networks, at the
percolation transition, the clusters form a loopless tree with
average connectivity Kc � 2 [12]. Thus a good model of
the cluster topology at connectivity Kc is the Cayley tree,
to which we apply Eq. (7) next.

The Cayley tree.—We consider a Cayley tree with co-
ordination number 3, thus the sites inside the tree are con-
nected to three neighbors, while those at the perimeter
have only one connection, giving the average connectiv-
ity as �K� � 2 2 2�N . Changing Q induces a phase tran-
sition from the chaotic to the ordered phase [8], thus to
check the validity of (7) in both of these phases, we inves-
tigated separately the system for Q � 0.5 (chaotic phase)
and Q � 0.85 (ordered phase).

Following the agenda set by Eq. (7), we first determine
the size distribution of active clusters, F�s�. Because of
the rather different topology, the functional form of F�s�
is different from (1). Assuming that the vertices are inde-
pendent, percolation theory gives [11]

Fc�s� �

Ω
s2tf�ss�j� if j ø N ,
s2tg�ss�N� if j � N , (8)

where j is the correlation length of the active clusters,
f�x� is an exponentially decaying function, and g�x� �
const for x ø 1 and decays rapidly for x ¿ 1.

Figures 3a and 3b present the data collapse for the dis-
tribution of active clusters, indicating that the two Q values
correspond to different percolation regimes: for Q � 0.85
the active clusters are small, following the first alternative
of Eq. (8), while for Q � 0.5 they percolate through the
system, following the second alternative. The data col-
lapse was obtained using t � 2.25 and s � 1.4, different
from tperc � 5�2, and sperc � 1�4. The origin of this dif-
ference lies in the nature of the Boolean law: the activity
of a vertex depends on the dynamics of the neighboring
vertices, generating correlations in the system [13]. Thus,
while the functional form of F�s� is correctly predicted by
percolation, both in 1D and for the Cayley tree the expo-
nents are different due to correlation between spins.

Substituting the distribution function Fc�s� in Eq. (2),
we obtain that smax has an asymptotic solution of the form

smax � nd�Q�, (9)

where d�Q� decreases with Q. The scaling of the size
of the largest cluster, smax, with N follows a power law
(see Fig. 3c), in contrast to the logarithmic dependence (3)
obtained for the one-dimensional case.

As Fig. 3c indicates, the dependence of Tmax on smax fol-
lows a stretch exponential, different from the exponential
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(4) in 1D,

Tmax � exp��hsmax�u� , (10)

where we find that h and u are independent of Q [14].
Finally, T �N� is proportional to Tmax, the proportionality

factor ac�N� having the same N dependence as in the one-
dimensional case (5), with Nc�0.5� � 25, Nc�0.85� � 66,
and b � 0.25 (see Fig. 3d). Combining these results and
using Eq. (7) we obtain

T �N� �

Ω
C3 exp�A�Q�Nd�Q��u if N ø Nc ,
C4Nb exp�A�Q�Nd�Q��u if N ¿ Nc ,

(11)

where A�Q� � 2h� n�Q�
N �d�Q�, and since n�Q� ~ N , A�Q�

is independent of N . Figure 3d compares the conjecture
(11) and the numerically obtained T �N�. Although the
dependence of T on N is quite involved, the agreement
is remarkable. While for both Q Eq. (11) has an expo-
nential contribution, the overall behavior of the period is
quite different: for Q � 0.5 (chaotic phase) the exponen-
tial component dominates, while for Q � 0.85 (ordered
phase), the power-law term Nb has the stronger influence.
This explains the earlier numerical results that T �N� can
be approximated by a power law in the ordered regime,
while it is exponential in the chaotic regime.

In conclusion, we have identified the factors determin-
ing the period of a Boolean system, showing that they can
be combined into a single equation, whose components
can be determined independently by a combination of
analytical and numerical tools. We find that depending on
the system’s topology, Eq. (7) can lead to rather complex
and unexpected T �N� functions. Without identifying all
constituents in (7), numerical investigation can easily ap-
proximate T �N� with simpler functions. Indeed, this is the
source of the inconclusive nature of numerical simulations
that focused only on T �N� [7,15]. The strength of Eq. (7)
lies in the fact that it focuses our attention on the factors
determining the period, thus offering a roadmap for the in-
vestigation of the dynamics of the Boolean networks. We
hope that this roadmap will induce further research towards
understanding the universality and the origin of the com-
ponents that, combined together, determine the dynamics
of the Boolean networks. It also indicates that the period,
due to its convoluted character, is not the best quantity to
investigate if one wishes to understand the phase transition
in Boolean systems. Rather, investigating the changes in
the components of T , as given by Eq. (7), might give better
measures of changes in the system as the transition point
is approached. Furthermore, Eq. (7) will be helpful in
addressing the dynamics of randomly connected Boolean
nets, a more realistic model of complex systems. Indeed,
we have recently performed simulations where spins were
placed on a random network [12], finding that following
the decomposition outlined in this paper we could obtain
excellent agreement between the total period and Eq. (7)
[16]. Finally, it would be rather important to investigate
how will the period of the Boolean systems change if one
uses as support more realistic networks, like scale-free [17]
or directed networks.
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