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We consider spin and electronic properties of itinerant electron systems, described by the spin-fermion
model, near the antiferromagnetic critical point. We expand in the inverse number of hot spots in the
Brillouin zone, N , and present the results beyond the previously studied N � ` limit. We found two new
effects: (i) Fermi surface becomes nested at hot spots, and (ii) vertex corrections give rise to anomalous
spin dynamics and change the dynamical critical exponent from z � 2 to z . 2. To first order in 1�N
we found z � 2N��N 2 2� which for a physical N � 8 yields z � 2.67.

PACS numbers: 74.20.Fg, 75.20.Hr
The problem of fermions interacting with critical anti-
ferromagnetic spin fluctuations attracts a lot of attention
at this time due to its relevance to both high temperature
superconductors and heavy-fermion materials [1]. The key
interest of the current studies is to understand the system
behavior near the quantum critical point (QCP), where the
magnetic correlation length diverges at T � 0 [2]. Al-
though in reality the QCP is almost always masked by
either superconductivity or precursor effects to supercon-
ductivity, the vicinity of the QCP can be reached by vary-
ing external parameters such as pressure in heavy-fermion
compounds or doping concentration in cuprates.

In this paper, we study the properties of the QCP with-
out taking pairing fluctuations into account. We assume
that the singularities associated with the closeness to the
QCP extend up to energies which exceed typical energies
associated with the pairing. This assumption is consis-
tent with the recent calculations of the pairing instability
temperature in cuprates [3]. From this perspective, the un-
derstanding of the properties of the QCP without pairing
correlations is a necessary preliminary step for subsequent
studies of the pairing problem.

A detailed study of the antiferromagnetic QCP was per-
formed by Hertz [4] and later by Millis [5] who chiefly
focused on finite T properties near the QCP. They both
argued that, if the Fermi surface contains hot spots (points
separated by antiferromagnetic momentum Q; see Fig. 1),
then spin excitations possess purely relaxational dynamics
with z � 2. They further argued that, in d � 2, d 1 z �
4; i.e., the critical theory is at marginal dimension, in which
case one should expect that spin-spin interaction yields, at
maximum, logarithmic corrections to the relaxational dy-
namics. Millis argued [5] that this is true provided that the
effective Ginzburg-Landau functional for spins (obtained
by integrating out the fermions) is an analytic function
of the spin ordering field. The analyticity is not guaran-
teed a priori as the expansion coefficients in the Ginzburg-
Landau functional are made of particle-hole bubbles and
are generally sensitive to the closeness to quantum criti-
cality due to the feedback effect from near critical spin
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fluctuations on the electronic subsystem. Millis, however,
demonstrated that the quartic term in the Ginszurg-Landau
functional is governed by high-energy fermions and is free
from singularities.

In this Letter, we argue that the regular Ginzburg-
Landau expansion is not possible in 2D by reasons
different from those displayed in [4,5]. Specifically,
we argue that the damping term in the spin propagator
(assumed to be linear in v in [4,5]) is by itself made out
of a particle-hole bubble, and, contrary to f4 coefficient,
is governed by low-energy fermions. We demonstrate that
due to singular vertex corrections the frequency depen-
dence of the spin damping term at the QCP is actually
v12a . In the one-loop approximation, we find a � 0.25.

Another issue which we study is the form of the renor-
malized quasiparticle Fermi surface near the magnetic in-
stability. In a mean-field spin-density wave (SDW) theory,
the Fermi surface in a paramagnetic phase is not affected
by the closeness to the QCP. Below the instability, the
doubling of the unit cell induces a shadow Fermi surface
at kF 1 Q, with the residue proportional to the deviation
from criticality. This gives rise to the opening of the SDW
gap near hot spots and eventually (for a perfect antiferro-
magnetic long range order) yields a Fermi surface in the
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FIG. 1. The Fermi surface with hot spots and the directions
of Fermi velocities at hot spots separated by Q, and the evolu-
tion of the Fermi surface evolution for (a) mean-field �N � `�
SDW theory and (b) finite N . In both cases, the doubling of the
unit cell due to antiferromagnetic SDW ordering introduces a
shadow Fermi surface and yields a gap opening near hot spots.
At finite N , however, the Fermi surface at the quantum criti-
cal point becomes nested at hot spots due to the vanishing of
renormalized yy .
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form of small pockets around �p�2, p�2� and symmetry
related points (see Fig. 1a).

Several groups argued [6,7] that this mean-field scenario
is modified by fluctuations, and the Fermi surface evolu-
tion towards hole pockets already begins within the para-
magnetic phase. We show that the Fermi surface near hot
spots does evolve as j ! `, but due to strong fermionic
damping (not considered in [6]) this evolution is a minor
effect which at j � ` only gives rise to a nesting at the
hot spots (see Fig. 1b).

The point of departure for our analysis is the spin-
fermion model which describes low-energy fermions inter-
acting with their own collective spin degrees of freedom.
The model is described by

H �
X
k,a

vF�k 2 kF�cy
k,ack,a 1

X
q

x21
0 �q�SqS2q

1 g
X

q,k,a,b

c
y
k1q,asa,bck,b ? S2q . (1)

Here c
y
k,a is the fermionic creation operator for an electron

with momentum k and spin projection a, si are the Pauli
matrices, and g measures the strength of the interaction be-
tween fermions and their collective bosonic spin degrees
of freedom. The latter are described by Sq and are charac-
terized by a bare spin susceptibility which is obtained by
integrating out high-energy fermions.

The form of the bare susceptibility x0�q� is an input for
the low-energy theory. We assume that x0�q� is nonsingu-
lar and peaks at Q, i.e., x0�q� � x0��j22 1 �q 2 Q�2�,
where j is the magnetic correlation length. In principle,
x0 can also contain a nonuniversal frequency dependent
term in the form �v�W�2, where W is of the order of a
fermionic bandwidth. We, however, will see that, for a
Fermi surface with hot spots which we consider here, this
term will be overshadowed by a universal v12a term pro-
duced by low-energy fermions.

The earlier studies of the spin-fermion model
demonstrated that the perturbative expansion for both
fermionic and bosonic self-energies holds in powers of
l � 3ḡ��4pyFj21�, where yF is the Fermi velocity at a
hot spot, and ḡ � g2x0. This perturbation theory obvi-
ously does not converge when j ! `. As an alternative
to a conventional perturbation theory, we suggested [8] the
expansion in the inverse number of hot spots in the Bril-
louin zone, N . Whether Q is commensurate or not is irrel-
evant for this expansion. Indeed, for Q � �p , p�, N � 8.
For incommensurate Q, N � 16 as Q and 2p 2 Q are
no longer identical. However, each of the two incom-
mensurate peaks in x�q, v� has a residue which is half
of that for Q � �p , p�, which cancels the increase in N .
Physically, large N implies that a spin fluctuation has N�2
independent channels to decay into a particle-hole pair.
This gives rise to a strong ��N� spin damping rate. At the
same time, a fermion near a hot spot can only scatter into a
single hot spot separated by Q, i.e., fermionic self-energy
does not contain N as the overall factor. Power counting
arguments then show that a large damping rate appears
in the denominators of the expressions for the fermionic
self-energy and vertex corrections, and makes them small
to the extent of 1�N . The only exception to this rule is
the fermionic self-energy due to a single spin fluctuation
exchange. This self-energy is singular and has a piece
which comes from static spin fluctuations and does not
contain 1�N [9].

The set of coupled equations for fermionic and bosonic
self-energies at N � ` has been solved in [9], and we
merely quote the result. Near hot spots, we have

G21
k �v� � v 2 ek 1 S�v� ,

x�q, Vm� � x0j2��1 1 �q 2 Q�2j2 2 iPV� .
(2)

Here ek � yxk̃x 1 yyk̃y , where k̃ � k 2 khs, and yx

and yy , which we set to be positive, are the components
of the Fermi velocity at a hot spot �y2

F � y2
x 1 y2

y �. The
fermionic self-energy Sk�v� and the spin polarization op-
erator PV are given by

S�v� � 2l
v

1 1

q
1 2

ijvj

vsf

, PV �
jVj

vsf
, (3)

and vsf � �4p�N�yxyyj22�ḡ.
We see from Eq. (3) that, for v # vsf, G�khs, v� �

Z��v 1 ivjvj��4vsf��, i.e., as long as j is finite,
the system preserves the Fermi-liquid behavior at the
lowest frequencies. The quasiparticle residue Z, however,
depends on the interaction strength, Z � �1 1 l�21,
and progressively goes down when the spin-fermion
coupling increases. At larger frequencies, v $ vsf, the
system crosses over to a region, which is in the basin of
attraction of the quantum critical point, j � `. In this
region, G21�kF , v� � �ijvjv̄�1�2 sgn�v� [9,10], where
v̄ � 9ḡyxyypNy

2
F is the upper frequency cutoff for the

quantum critical behavior. At the same time, the spin
propagator has a simple z � 2 relaxational dynamics
unperturbed by the strong frequency dependence of the
fermionic self-energy [11].

Our present goal is to go beyond the N � ` limit and
analyze the role of 1�N corrections. The 1�N terms give
rise to two new features: vertex corrections which renor-
malize both fermionic and bosonic self-energies, and static
fermionic self-energy Sk . The corresponding diagrams are
presented in Fig. 2.

The lowest-order 1�N corrections have been calculated
previously [9,12]. Both vertex correction and the static
self-energy are logarithmic in j:

Dg
g

�
Q�y�

N
logj , (4)

Dek � 2ek1Q
12

pN

yxyy

y
2
F

logj , (5)

where ek1Q � 2yxk̃x 1 yyk̃y , and Q�y� � �4�p� 3

arctan�yx�yy� interpolates between Q � 1 for yx � yy ,
and Q � 2 for yy ! 0.
5609



VOLUME 84, NUMBER 24 P H Y S I C A L R E V I E W L E T T E R S 12 JUNE 2000
FIG. 2. The one-loop RG diagrams for the fermionic self-
energy and vertex renormalization. Solid lines are full fermionic
propagators, wavy lines are full spin susceptibilities, and black
triangles are full vertices. The lowest-order diagrams are ob-
tained by replacing full internal lines and vertices by their
N � ` forms.

Besides, the 1�N corrections also contribute
�1�N�v logj to G21

k �v�, but this term is negligible
compared to S�v� and we neglect it.

We see from Eqs. (4) and (5) that the 1�N corrections to
the vertex and to the velocity of the excitations are almost
decoupled from each other: the velocity renormalization
does not depend on the coupling strength at all, while the
renormalization of the vertex depends on the ratio of ve-
locities through only a nonsingular Q�y�. This is a direct
consequence of the fact that the dynamical part of the spin
propagator is obtained self-consistently within the model.
Indeed, the overall factors in Dek and Dg�g are ḡ�vsfj

2�,
where vsfj

2 comes from the dynamical part of the spin
susceptibility. Since the fermionic damping is produced
by the same spin-fermion interaction as the fermionic self-
energy, vsf scales as 1�ḡ, and the coupling constant dis-
appears from the right-hand side of Eqs. (4) and (5).

The logarithmic dependence on j implies that the 1�N
expansion breaks down near the QCP, and one has to sum
up the series of the logarithmic corrections. We do this in
a standard one-loop approximation by summing up the se-
ries in �1�N� logj but neglecting regular 1�N corrections
to each term in the series. We verified that in this approxi-
mation the cancellation of the coupling constant holds even
when g is a running, scale dependent coupling. This in turn
implies that one can separate the velocity renormalization
from the renormalization of the vertex to all orders in 1�N .

By separating the corrections to yx and yy and perform-
ing standard renormalization group (RG) manipulations,
we obtain a set of two RG equations for the running yR

x
and yR

y :

dyR
x

dL
�

12
pN

�yR
x �2yR

y

�yR
x �2 1 �yR

y �2 ,

dyR
y

dL
� 2

12
pN

�yR
y �2yR

x

�yR
x �2 1 �yR

y �2 ,

(6)

where L � logj. The solution of these equations is
straightforward, and yields

yR
x � yxZ, yR

y � yyZ21,

Z �

µ
1 1

24L
pN

yy

yx

∂1�2

,
(7)
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where, we recall that yx and yy are the bare values of the
velocities (the ones which appear in the Hamiltonian).

We see that yR
y vanishes logarithmically at j ! `. This

implies that right at the QCP the renormalized velocities
at khs and khs 1 Q are antiparallel to each other, i.e., the
Fermi surface becomes nested at hot spots (see Fig. 1b).
This nesting creates a “bottleneck effect” immediately be-
low the criticality as the original and the shadow Fermi
surfaces approach hot spots with equal derivatives (see
Fig. 1b). This obviously helps in developing a SDW gap
at khs below the magnetic instability. However, above
the transition, no SDW precursors appear at T � 0. Ear-
lier works which found SDW precursors considered ei-
ther a toy model without spin damping [6] or the case of
high temperatures when classical, thermal spin fluctuations
dominate [7].

Another feature of the RG equations (6) is that they leave
the product yxyy unchanged. This is a combination in
which velocities appear in vsf. The fact that yxyy is not
renormalized implies that, without vertex renormalization,
vsfj

2 remains finite at j � `, i.e., spin fluctuations pre-
serve a simple z � 2 relaxational dynamics.

We next consider vertex renormalization. Using again
the fact that ḡvsf does not depend on the running coupling
constant, one can straightforwardly extend the second-
order result for the vertex renormalization [Eq. (4)] to the
one-loop RG equation,

dgR

dL
�

Q�y�
N

gR , (8)

where gR is a running coupling constant, and Q�y� is
the same as in (4) but contains renormalized velocities
yR

x and yR
y . At the QCP, the dependence on j obvi-

ously transforms into the dependence on frequency [L �
logj ! �1�2� log jv̄�vj, where, we recall, v̄ is the upper
cutoff for the quantum critical behavior]. Using the fact
that, for j ! `, yR

y �yR
x � Np�24L and expanding Q�y�

near yR
y � 0, we find Q�y� � 2�1 2 �2�p�yR

y �yR
x � �

2 2 N�3L. Substituting this result into (8) and solving
the differential equation, we obtain �ṽ � v�v̄�,

gR � gjṽj21�N j logṽj21�6. (9)

We see that, at the QCP, the running coupling constant
diverges as v ! 0 roughly as jṽj21�N . Substituting this
result into the spin polarization operator and using the fact
that vsf ~ �gR�22, we find that, at the QCP,

PV ~ jṽj�N22��N j logṽj21�3. (10)

This result implies that vertex corrections change the dy-
namical exponent z from its mean-field value z � 2 to
z � 2N��N 2 2�. For N � 8, this yields z � 2.67 and
x21�Q, v� ~ jvj12a , where a � 0.25.

Singular vertex corrections also renormalize the
fermionic self-energy S�v� ~ �gR�y

R
F �

p
jvj. Using the

results for gR and y
R
F � yR

x we obtain at criticality

S�v� ~ jṽj�N22��2N j logṽj22�3. (11)
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Equations (7), (10), and (11) are the central results of
this paper. We see that the singular corrections to the
Fermi velocity cause nesting, but do not affect the spin
dynamics. The corrections to the vertex, on the other hand,
do not affect velocities, but change the dynamical critical
exponent for spin fluctuations.

We now briefly discuss the form of the susceptibility
at finite T . Previous studies have demonstrated [2,5] that
the scattering of a given spin fluctuation by classical, ther-
mal spin fluctuations yields, up to logarithmic prefactors,
j22 ~ uT , where u is the coefficient in the f4 term in the
Ginzburg-Landau potential. This implies that, at the QCP,
x21�Q, v� ~ T 2 ijvj, at N � `.

We, however, argue that the linear in T and the linear
in v terms have completely different origins: the linear
in v term comes from low energies and is universal, while
the linear in T term comes from high energies and is
model dependent. This can be understood by analyzing
the particle-hole bubble at finite T . We found that, for
a linearized ek � yF�k 2 kF�, PV preserves exactly the
same form as at T � 0. The temperature dependence
of P appears due to a nonzero curvature of the elec-
tronic dispersion and is obviously sensitive to the details
of the dispersion at energies comparable to the bandwidth.
Similarly, the derivation of the Landau-Ginzburg poten-
tial from (1) shows [5] that u vanishes for linearized ek ,
and is finite due to a nonzero curvature of the fermionic
dispersion.

The different origins of T and v dependences in
x�Q, v� imply that the anomalous v12a frequency
dependence of x�Q, V� is not accompanied by the
anomalous temperature dependence of x�Q, 0�. In view
of this, it is not clear whether our theory explains the
anomalous spin dynamics observed in heavy fermion
CeCu62xAux [13], or the explanation should involve
the local Kondo physics [14]. On one hand, the ob-
served exponent for the frequency dependence of PV is
1 2 a � 0.8 which is very close to our 1 2 a � 0.75.
On the other hand, experimental data demonstrate V�T
scaling, which our model does not have.

Finally, we consider how anomalous vertex corrections
affect the superconducting problem. We and Finkel’stein
argued recently [3] that at j � ` the kernel K�v, V�
of the Eliashberg-type gap equation for the d-wave
anomalous vertex F�V� � �pT�2�

P
v K�v, V�F�v�

behaves as K�v, V� ~ g2��y2
FS2�v�PV2v�1�2. At

N � `, this yields (including the prefactor) K�v, V� �
jv�V 2 v�j21�2. Although this kernel is qualitatively
different from the one in the BCS theory because it
depends on both frequencies, it still scales as an inverse
frequency due to an interplay between a non-Fermi liquid
form of the fermionic self-energy and the absence of the
gap in the spin susceptibility which mediates pairing. We
demonstrated in [3] that this inverse frequency dependence
gives rise to a finite pairing instability temperature even
when j � `.
To check how the kernel is affected by vertex correc-
tions, we substitute the results for gR , yF , S�v�, and PV

into K�v, V�. We find after simple manipulations that
despite singular vertex corrections the kernel in the gap
equation still scales inversely proportional to frequency.
A simple extension of the analysis in [3] then shows that
the system still possesses a pairing instability at j � ` at
a temperature which differs from that without vertex renor-
malization by only 1�N corrections.

To summarize, in this paper we considered the properties
of the antiferromagnetic quantum critical point for itinerant
electrons by expanding in the inverse number of hot spots
in the Brillouin zone N � 8. We went beyond a self-
consistent N � ` theory and found two new effects: (i) the
Fermi surface becomes nested at hot spots which is a weak
SDW precursor effect, and (ii) vertex corrections account
for anomalous spin dynamics and change the dynamical
critical exponent from z � 2 to z . 2. To first order in
1�N we found z � 2N��N 2 2� � 2.67. We argued that
anomalous frequency dependence is not accompanied by
anomalous T dependence.
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